Why Choose BONTAC?

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Learn More

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs

Do you have any questions?

What is the mechanism of NAD powder on action?

Nicotinamide adenine dinucleotide (NAD) has several essential roles in metabolism. It acts as a coenzyme in redox reactions, as a donor of ADP-ribose moieties in ADP-ribosylation reactions, as a precursor of the second messenger molecule cyclic ADP-ribose, as well as acting as a substrate for bacterial DNA ligases and a group of enzymes called sirtuins that use NAD+ to remove acetyl groups from proteins. In addition to these metabolic functions, NAD+ emerges as an adenine nucleotide that can be released from cells spontaneously and by regulated mechanisms, and can therefore have important extracellular roles.

How to choose a real NAD powder material manufacturer?

First, inspect the factory. After some screening, NAD companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NAD powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NAD powder. If high purity NAD cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NAD powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.

What the differences between NAD and NAD+?

The difference all comes down to the charge of these coenzymes. NAD+ is written with a superscript + sign because of the positive charge on one of its nitrogen atoms. It is the oxidized form of NAD. It’s considered “an oxidizing agent” because it accepts electrons from other molecules.Although they are different chemically, these terms are mostly used interchangeably when discussing their health benefits. Another term you may come across is NADH, which stands for nicotinamide adenine dinucleotide (NAD) + hydrogen (H). This is also used interchangeably with NAD+ for the most part. Both are nicotinamide adenine dinucleotides that function as either hydride donors or hydride acceptors. The difference between these two is that that NADH becomes NAD+ after it donates an electron to another molecule.

Our updates and blog posts

02 Apr

Targeting NAD+ Salvage Pathway as a Potential Approach to Combat Obesity

Introduction Mar 4th is determined as the World Obesity Day. World Obesity Federation, UNICEF and WHO have hosted a global youth-led webinar to talk about obesity & youth. The obesity crisis has gradually attracted much attention. The latest report by the Lancet suggests that one billion people are bothered by obesity (2022), with 650 million adults, 340 million adolescents and 39 million children. Recently, etiological studies and interventions for obesity have been progressively focused on the central nervous system, with an attempt to curb the onset of obesity at its source. Notably, targeting NAD+ salvage pathway in hypothalamic astrocytes may be a potential approach to combat obesity. The association of hypothalamic astrocytes and obesity The hypothalamus functions as the appetite regulation center, which receives and integrates the neuroendocrine factors produced by the central nervous system and peripheral tissues to promote or suppress appetite, so as to affect body weight. Noteworthily, aypothalamic astrocytes can apparently decrease glucose clearance and increase plasma insulin levels, playing an essential role in modulating energy metabolism, which are expected to be a new target for obesity treatment. Alleviation of high-fat diet (HFD)-induced obesity by repressing astrocyte NAD+ salvage pathway Under conditions of excessive fat intake, the NAD+ salvage pathway is specifically activated in hypothalamic astrocytes, which restrains the energy expenditure (EE) and fat oxidation in adipose tissues by downregulating sympathetic nerve innervation, eventually resulting in the accumulation of adipose tissue fat and the development of obesity. CD38 as a downstream mediator of astrocyte inflammation induced by the NAD+ salvage pathway. CD38 functions downstream of the NAD+ salvage pathway in hypothalamic astrocytes burdened with excess fat. CD38 knockdown in arcuate nucleus astrocytes diminishes the weight gain, reduces fat mass, increases EE, and lowers RER during HFD consumption. Cd38 depletion in hypothalamic astrocytes may improve hypothalamic inflammation by increasing NAD+ level. Hypothalamic inflammation can not only lead to energy imbalances, but also exacerbate central insulin resistance and leptin resistance, which can lead to the accumulation of fat in peripheral tissues. The role of nicotinamide phosphoribosyltransferase (NAMPT)–NAD+–CD38 axis in obesity In mammals, the salvage pathway represents the primary means of maintaining cellular NAD+ level. A crucial step in the NAD+ salvage pathway is catalyzed by NAMPT. In response to fat overload, the activation of the astrocytic NAMPT-NAD+-CD38 axis induces pro-inflammatory responses in the hypothalamus, eliciting aberrantly activated basal Ca2+ signals and compromised Ca2+ responses to metabolic hormones such as insulin, leptin, and glucagon-like peptide 1, ultimately resulting in dysfunctional hypothalamic astrocytes and contribute to the development of obesity. Conclusion Mechanically, inhibition of hypothalamic astrocytic NAD+ salvage pathway, along with its downstream CD38, mitigates hypothalamic inflammation and attenuates the development of HFD-induced obesity in male mice. Reference Park, J.W., Park, S.E., Koh, W. et al  (2024). Hypothalamic astrocyte NAD+ salvage pathway mediates the coupling of dietary fat overconsumption in a mouse model of obesity. Nat Commun 15, 2102. https://doi.org/10.1038/s41467-024-46009-0 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR). There are various types of NAD to be selected, encompassing NAD ER Grade (endoxin removal), NAD Grade I (IVD/dietary supplement/cosmetics raw powder), NAD Grade II (API/intermediates) and NAD Grade IV (if any higher requirement on the solubility), which can be provided in the form of lyophilized powder or crystalline powder. The purity of BONTAC NAD can reach above 98%.  Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. BONTAC holds no responsibility for any claims, damages, losses, expenses or costs resulting or arising directly or indirectly from your reliance on the information and material on this website.

02 Apr

The Molecular Mechanisms Underlying the Interaction Between NAD+/NMN and DBC1

Introduction Oxidized form of nicotinamide adenine dinucleotide (NAD+) and its precursor nicotinamide mononucleotide (NMN) have been uncovered to restore DNA repair and prevent cancer progression via the deleted in breast cancer 1 (DBC1). This research is committed to deciphering the detailed molecular mechanisms. About DBC1 DBC1 is a nuclear protein initially cloned from a human chromosome 8p21 region, which can modulate diversified targets by protein-protein interaction, contributing to various cellular processes such as apoptosis, DNA repair, senescence, transcription, metabolism, circadian cycle, epigenetic regulation, cell proliferation, and tumorigenesis. The affinity and molecular binding mechanisms between NAD+/NMN and DBC1354–396 Under the help of nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments, it is verified that both NAD+ and NMN have a binding relationship with the NHD domain of DBC1. Specifically, NAD+ interacts with DBC1354-396 through hydrogen bonds, with a binding affinity (8.99 μM) nearly twice that of NMN (17.0 μM) and the key binding sites are primarily residues E363 and D372. The vital roles of E363 and D372 mutagenesis in ligand-protein interaction The N-terminal loop of DBC1354-396 encloses the small ligand within a local space, anchoring NAD+ and NMN to the protein through key amino acid residues E363 and D372 via hydrogen bonding. Conclusion Both NAD+ and its precursor NMN can bind to DBC1's NHD domain (DBC1354–396) at key sites E363 and D372, providing novel clues for the development of targeted therapies and drug research on DBC1-associated disease including tumors. Reference Ou L, Zhao X, Wu IJ, et al. Molecular mechanism of NAD+ and NMN binding to the Nudix homology domains of DBC1. Int J Biol Macromol. Published online February 12, 2024. doi:10.1016/j.ijbiomac.2024.130131 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

11 Apr

Amelioration of Myocardial I/R Injury with NR via Autophagy and Oxidative Stress

Introduction Myocardial ischemia-reperfusion (I/R) injury has emerged as an urgent clinical issue that may offset the benefits of reperfusion therapy and even worsen the prognosis of acute myocardial infarction, a severe cardiovascular disease with significant mortality and morbidity. Nicotinamide riboside (NR), a nicotinamide adenine dinucleotide (NAD+) intermediate, has been unveiled to hold great therapeutic potential in myocardial I/R injury. About myocardial I/R injury  Myocardial I/R injury refers to the damaging effects on cardiomyocytes or heart tissues following ischemia and the regaining of blood perfusion or oxygen supply, with characteristics of cell swelling, contracture of myofibrils, and disruption of the sarcolemma in myocardium. The mechanisms of myocardial I/R injury are extremely complex, chiefly involving cellular and molecular biological events such as cellular oxidative stress, intracellular calcium overload, mitochondrial dysfunction, inflammatory response, apoptosis and autophagy. Strikingly, autophagy and oxidative stress have been perceived as vital factors in the treatment of myocardial I/R injury. The alleviating effects of NR on myocardial I/R injury in mice NR can improve the cardiac function of mice with myocardial I/R injury, and reduce the generation of myocardial injury- and oxidative stress-associated biomarkers. Herein, the optimal concentration of NR for protection against H/R injury is 10 mM. In vivo, NR diminishes the area of myocardial ischemic infarction, alleviates pathological myocardial changes, decreases inflammatory cell infiltration, and attenuates the levels of mitochondrial reactive oxygen species (ROS) as well as creatine kinase myocardial band (CK-MB). In vitro, NR pretreatment lessens the levels of lactate dehydrogenase, CK-MB, malondialdehyde, superoxide dismutase and ROS, as well as the mortality of H9c2 cells after the induction of hypoxia/reoxygenation (H/R) injury. The significance of Sirt 1 pathway in the regulation of autophagy by NR Excessive autophagy can exacerbate I/R injury, giving rise to an increase in cardiomyocyte apoptosis and greater cardiac dysfunction. Noteworthily, NR can lead to the activation of Sirt 1, an NAD+-dependent enzyme, to protect the H9c2 cells against excessive autophagy, thereby alleviating the myocardial I/R injury. Post NR pre-treatment, the levels of autophagy-related proteins (Beclin 1, P62 and LC3II/LC3I) are apparently downregulated in the H9c2 cells challenged with H/R. Remarkably, the supplement of Sirt 1 inhibitor EX527 overtly attenuates NR-induced reduction in the expression levels of autophagy-related proteins under H/R conditions, hinting the significance of Sirt 1 in the regulation of autophagy by NR. Conclusion The myocardial I/R injury can be ameliorated by regulating the autophagy and oxidative stress with NR. On the one hand, NR can directly participate in oxidative reduction to lessen the level of oxidative stress in cardiomyocytes. On the other hand, NR can protect cardiomyocytes against excessive autophagy, which is possibly accomplished by increasing the NAD+ content in the body via the Sirt 1 pathway. Reference Yuan C, Yang H, Lan W, et al. Nicotinamide ribose ameliorates myocardial ischemia/reperfusion injury by regulating autophagy and regulating oxidative stress. Exp Ther Med. 2024;27(5):187. doi:10.3892/etm.2024.12475 BONTAC NR BONTAC is one of the few suppliers in China that can launch mass production of raw materials for NR, with self-owned factory and professional R&D team. Up till now, there are 173 BONTAC patents. BONTAC provides one-stop service for customized products. Both malate and chloride salt forms of NR are available. By dirt of unique Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method, the product content and conversion rate can be maintained in a higher level. The purity of BONTAC NR can reach above 97%. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

Do you have any question? Don't hesitate to contact with us