Why Choose BONTAC?

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Learn More

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs

Do you have any questions?

What are the procedures for general NMN manufacturers processing NMN manufacture?

<p>1.Raw material production process<br />Bioenzyme catalysis is a popular production method in the industry. It has a high threshold and several key catalytic enzymes are expensive, accounting for about 80% of the overall production process cost, but it is also the safest and most efficient production method. In the production of NMN by bioenzyme catalysis, the use of food-grade raw materials is an important part of the process to ensure product safety and to ensure that standards are followed.<br />2.High standard of production conditions<br />Production conditions refer to the standard of labor consumption required to complete the qualified products of the unit under certain production organization and production technology conditions. There are certifications issued by regulatory authorities, such as cGMP in the United States, TGA in Australia, GMP in Japan, etc.<br />3.High standard of product testing.<br />Product testing requires reliable test methods and reagents that are used throughout the production process. They are not only inspection standards for the final product, but also for the intermediate stages of control, including testing of active ingredients, testing of heavy metals such as lead, arsenic and mercury, and testing of pathogenic bacteria, microorganisms and processing by-products.&nbsp;<br />For NMN products, the commonly used method for active ingredient content testing is high performance liquid chromatography (HPLC), which is efficient, accurate and precise. For different manufacturers, the standards for testing reagents are different. Strict manufacturers will purchase high purity, analytically pure reagents from third party standards companies as controls.<br />4.Safety assessment<br />For relatively new raw materials such as NMN, it is not enough for consumers to judge the safety of the product on the side of the merchant alone. At this point, the third-party authoritative assessment report is particularly important.<br />Currently, there are two generic safety assessment reports, one is a toxicological assessment report and the other is a safety assessment report. In China, toxicological assessment reports usually account for the majority. However, there are still few NMN companies that can issue such reports<br />5.Storage and Packaging<br />NMNs are usually stored in sealed containers for up to 12 months. If it can be stored for 24 months with insignificant changes in purity, the stability of NMN is very reliable. Currently, the more common packaging materials are pet or hope, which are pharmaceutical packaging materials. They are non-toxic, odorless, lightweight, portable and effectively isolate air and moisture.</p>

What are the challenges of marketing the NMN powder for manufacturers?

<p>The safety of NMN powder cannot be assessed since required clinical and toxicological studies have not been completed yet to establish the recommended safe levels for long term administration. Nevertheless, their safety and efficacy are uncertain and unreliable since most of them have not been backed up by rigorous scientific preclinical and clinical testing. This issue has been arisen as manufacturers are hesitant to pay for research and clinical trials due to potential lower profit margin, and there is no authorizing agency to regulate NMN products because it is often sold as functional food product rather than heavily regulated therapeutic drug. Therefore, more strict approval process has been demanded by consumer advocacy groups requesting regulatory agencies to set standard and restrictions for marketing anti-aging health products, considering safety, health and wellbeing of consumers. NMN should not be considered as a panacea for the elderly, because boosting NAD levels when not required may yield some detrimental effects. Therefore, the dose and frequency of NMN supplementation should be carefully prescribed depending on the type of age-related deficiency and all other confronting health conditions of the people. Other NAD precursors have been studied to discover the efficacy for diverse age-related deficiencies and they are used for particular deficiencies, only after they are proven for effectiveness and safe to use. Therefore, the same principle should be applied to NMN as well</p>

How to choose a real NMN powder material manufacturer?

<p>First, inspect the factory. After some screening, NMN companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMN powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMN powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.</p>

Our updates and blog posts

19 Jan

The latest research proves: Coenzyme NAD+ can enhance tumor immunity! Expert Comment from Chinese Academy of Sciences

On August 10, 2021, researchers from Shanghai University of Science and Technology published an article titled NAD+ supplement potentiates tumor killing function by rescuing defective TUBBY-mediated NAMPT transcription in tumor infiltrated T cells in Cell Reports, revealing that NAD+ in supplemented during CAR-T therapy and immune checkpoint inhibitor therapy, it can improve the anti-tumor activity of T. At present, the supplementary precursor of NAD+, as a nutritional product,has been verified for human consumption safety.This achievement provides a simply and feasible new method for improving the anti-tumor activity of T cells. Cancer immunotherapies including the adoptive transfer of naturally occurring tumor-infiltrating lymphocytes (TILs) and genetically engineered T cells, as well as the use of immune checkpoint blockade (ICB) to boost the function of T cells, have emerged as promising approaches to achieve durable clinical responses of otherwise treatment-refractory cancers (Lee et al., 2015; Rosenberg and Restifo, 2015; Sharma and Allison, 2015). Although immunotherapies have been successfully used in the clinic, the number of patients benefiting from them is still limited (Fradet et al., 2019; Newick et al., 2017). Tumor microenvironment (TME)-related immunosuppression has emerged as the major reason for low and/or no response to both immunotherapies (Ninomiya et al., 2015; Schoenfeld and Hellmann, 2020). Therefore, efforts to investigate and overcome TME-related limitations in immune therapies are of great urgency. The fact that immune cells and cancer cells share many fundamental metabolic pathways implies an irreconcilable competition for nutrients in TME (Andrejeva and Rathmell, 2017; Chang et al., 2015). During uncontrolled proliferation, cancer cells hijack alternative pathways for more rapid metabolite generation (Vander Heiden et al., 2009). As a consequence, nutrient depletion, hypoxia, acidity, and generation of metabolites that can be toxic in the TME may hinder successful immunotherapy (Weinberg et al., 2010). Indeed, TILs often experience mitochondrial stress within growing tumors and become exhausted (Scharping et al., 2016). Interestingly, multiple studies also indicate that metabolic changes in TME could re-shape T cell differentiation and functional activity (Bailis et al., 2019; Chang et al., 2013; Peng et al., 2016). All these evidences inspired us to hypothesize that metabolic reprogramming in T cells might rescue them from a stressed metabolic environment, thereby reinvigorating their anti-tumor activity (Buck et al., 2016; Zhang et al., 2017). In this current study, by integrating both genetic and chemical screens, we identified that NAMPT, a key gene involved in NAD+ biosynthesis, was essential for T cell activation. NAMPT inhibition led to robust NAD+ decline in T cells, thereby disrupting glycolysis regulation and mitochondrial function, blocking ATP synthesis, and dampening the T cell receptor (TCR) downstream signaling cascade. Building on the observation that TILs have relatively lower NAD+ and NAMPT expression levels than T cells from peripheral blood mononuclear cells (PBMCs) in ovarian cancer patients, we performed genetic screening in T cells and identified that Tubby (TUB) is a transcription factor for NAMPT. Finally, we applied this basic knowledge in the (pre) clinic and showed very strong evidence that supplementation with NAD+ dramatically improves the anti-tumor killing activity both in adoptively transferred CAR-T cells therapy and immune check point blockade therapy, indicating their promising potential for targeting NAD+ metabolism to better treat cancers. 1.NAD+ regulates the activation of T cells by affecting energy metabolism After antigen stimulation, T cells undergo metabolic reprogramming, from mitochondrial oxidation to glycolysis as the main source of ATP. While maintaining sufficient mitochondrial functions to support cell proliferation and effector functions.Given that NAD+ is the main coenzyme for redox, the researchers verified the effect of NAD+ on the level of metabolism in T cells through experiments such as metabolic mass spectrometry and isotope labeling. The results of in vitro experiments show that NAD+ deficiency will significantly reduce the level of glycolysis, TCA cycle and electron transport chain metabolism in T cells. Through the experiment of replenishing ATP, the researchers found that the lack of NAD+ mainly inhibits the production of ATP in T cells, thereby reducing the level of T cell activation. 2.The NAD+ salvage synthesis pathway regulated by NAMPT is essential for T cell activation The metabolic reprogramming process regulates the activation and differentiation of immune cells. Targeting T cell metabolism provides an opportunity to modulate the immune response in a cellular way. Immune cells in the tumor microenvironment, their own metabolic level will also be correspondingly affected. The researchers in this article have discovered the important role of NAMPT in the activation of T cells through genome-wide sgRNA screening and metabolism-related small molecule inhibitor screening experiments. Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions and can be synthesized through the salvage pathway, de novo synthesis pathway, and Preiss-Handler pathway. The NAMPT metabolic enzyme is mainly involved in the NAD+ salvage synthesis pathway. Analysis of clinical tumor samples found that in tumor-infiltrating T cells, their NAD+ levels and NAMPT levels were lower than other T cells. Researchers speculate that NAD+ levels may be one of the factors that affect the anti-tumor activity of tumor-infiltrating T cells. 3.Supplement NAD+ to enhance the anti-tumor activity of T cells Immunotherapy has been exploratory research in cancer treatment, but the main problem is the best treatment strategy and the effectiveness of immunotherapy in the overall population. Researchers want to study whether enhancing the activation ability of T cells by supplementing NAD+ levels can enhance the effect of T cell-based immunotherapy. At the same time, in the anti-CD19 CAR-T therapy model and anti-PD-1 immune checkpoint inhibitor therapy model, it was verified that supplementation of NAD+ significantly enhanced the tumor-killing effect of T cells. The researchers found that in the anti-CD19 CAR-T treatment model, almost all mice in the CAR-T treatment group supplemented with NAD+ achieved tumor clearance, while the CAR-T treatment group without NAD+ supplemented only about 20 % Of mice achieved tumor clearance. Consistent with this, in the anti-PD-1 immune checkpoint inhibitor treatment model, B16F10 tumors are relatively tolerant to anti-PD-1 treatment, and the inhibitory effect is not significant. However, the growth of B16F10 tumors in the anti-PD-1 and NAD+ treatment group could be significantly inhibited. Based on this, NAD+ supplementation can enhance the anti-tumor effect of T cell-based immunotherapy. 4.How to supplement NAD+ The NAD+ molecule is large and cannot be directly absorbed and utilized by the human body. The NAD+ directly ingested orally is mainly hydrolyzed by brush border cells in the small intestine. In terms of thinking, there is indeed another way to supplement NAD+, which is to find a way to supplement a certain substance so that it can synthesize NAD+ autonomously in the human body. There are three ways to synthesize NAD+ in the human body: Preiss-Handler pathway, de novo synthesis pathway and salvage synthesis pathway. Although the three ways can synthesize NAD+, there is also a primary and secondary distinction. Among them, the NAD+ produced by the first two synthetic pathways only accounts for about 15% of the total human NAD+, and the remaining 85% is achieved through the way of remedial synthesis. In other words, the salvage synthesis pathway is the key to the human body to supplement NAD+. Among the precursors of NAD+, nicotinamide (NAM), NMN and nicotinamide ribose (NR) all synthesize NAD+ through a salvage synthesis pathway, so these three substances have become the body's choice for supplementing NAD+. Although NR itself has no side effects, in the process of NAD+ synthesis, most of it is not directly converted into NMN, but needs to be digested into NAM first, and then participate in the synthesis of NMN, which still cannot escape the limitation of rate-limiting enzymes. Therefore, the ability to supplement NAD+ through oral administration of NR is also limited . As a precursor for supplementing NAD+, NMN not only bypasses the restriction of rate-limiting enzymes, but is also absorbed very quickly in the body and can be directly converted into NAD+. Therefore, it can be used as a direct, rapid and effective method to supplement NAD+. Expert Reviews: Xu Chenqi (Excellence and Innovation Center of Molecular Cell Science, Chinese Academy of Sciences, Immunology Research Expert) Cancer treatment is a problem in the world. The development of immunotherapy has made up for the limitations of traditional cancer treatment and expanded the treatment methods of doctors. Cancer immunotherapy can be divided into immune checkpoint blocking therapy, engineered T cell therapy, tumor vaccine, etc. These treatment methods have played a certain role in the clinical treatment of cancer. At the same time, this also makes the current focus of immunotherapy research on how to further enhance the effect of immunotherapy and expand the beneficiaries of immunotherapy.

02 Apr

NR as a Promising Therapeutic Candidate for Alpers' Disease

Introduction Alpers' disease is both a neurodegenerative disorder and a metabolic disorder, which is tightly linked to mitochondrial dysfunction and mutations in the catalytic subunit of polymerase gamma (POLG) gene. Noteworthily, supplementation of NAD precursor, nicotinamide riboside (NR), is evidenced to explicitly ameliorate mitochondrial defects in cortical organoids of patients with Alpers' disease. About Alpers’ disease Alpers’ disease is an autosomal recessive disorder, which is often accompanied with cortical neuronal loss as well as depletion of mitochondrial DNA (mtDNA) and complex I (CI). The disease occurs in about 1 in 100,000 newborns. Most individuals with Alpers’ disease show no symptoms at birth. Diagnosis is generally established by determining the POLG gene. Once onset (usually between first and third years of life), patients may present the symptoms such as progressive encephalopathy, epilepsy, myoclonus, and myasthenia gravis. Currently, there is no effective method to cure this disease. Establishment of Alpers' disease model in vitro Induced pluripotent stem cells (iPSCs) are generated from Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), followed by differentiation into cortical organoids and neural stem cells (NSCs). Alpers's iPSCs exhibit mild mitochondrial alterations, including an elevated L-lactate level and a depletion of CI. Alpers' NSCs manifest profound mtDNA depletion and mitochondrial dysfunction. Alpers' cortical organoids demonstrate cortical neuronal loss and astrocyte accumulation. The role of NR in Alpers' cortical organoids Long-term treatment with NR partially ameliorates the neurodegenerative alterations observed in Alpers' cortical organoids. Specifically, supplementation of NR effectively counteracts neuronal loss, glial enrichment, and mitochondrial damage observed in cortical organoids of patients with Alpers' disease. Reversal of the dysregulated pathways in Alpers' patient organoids post NR treatment NR treatment offsets the downregulation of mitochondrial  and synaptogenesis-related pathways, as well as upregulation of pathways associated with astrocyte/glial cells and neuroinflammation are obviously activated in Alpers' cortical organoids. Conclusion Replenishment of NR to increase NAD level can rescue mitochondrial defects and neuronal loss in iPSC-derived cortical organoid of Alpers’ disease, with relatively high safety and bioavailability, showing great promise as a therapeutic candidate for this intractable disorder. Reference Hong Y, Zhang Z, Yangzom T, et al. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC derived Cortical Organoid of Alpers' Disease. Int J Biol Sci. 2024;20(4):1194-1217. Published 2024 Jan 25. doi:10.7150/ijbs.91624 BONTAC NR BONTAC is one of the few suppliers in China that can launch mass production of raw materials for NR, with self-owned factory and professional R&D team. Up till now, there are 173 BONTAC patents. BONTAC provides one-stop service for customized products. Both malate and chloride salt forms of NR are available. By dirt of unique Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method, the product content and conversion rate can be maintained in a higher level. The purity of BONTAC NR can reach above 97%. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The opinions expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

02 Apr

Anti-inflammatory Function of NMN in Macrophages via IDO1/Kynurenine/AhR Axis

1. Introduction Nicotinamide mononucleotide (NMN) supplementation has been suggested to hamper the inflammatory responses via restoring NAD+ level and downregulating the expression of Cyclooxygenase-2 (COX-2). Strikingly, both Aryl hydrocarbon receptor (AhR) and Indoleamine 2,3-Dioxygenase 1 (IDO1), two key enzymes for kynurenine production, can mediate the anti-inflammatory function of NMN in RAW 264.7 macrophages. 2. The alleviated inflammatory response in the presence of NMN supplementation For deciphering the impact of NMN in vivo, mice are subjected to daily intraperitoneal (i.p.) injection of NMN (500 mg/kg) for consecutive 6 days, followed by i.p. injection of lipopolysaccharides (LPS) (5 mg/kg) or alum (700 μg) on day 7. It is discovered that NMN supplementation suppresses LPS- or alum-induced inflammation in mice, as manifested by the downregulation of proinflammatory cytokines (IL-6 and IL-1β) and proinflammatory enzyme (COX-2).  3. The necessity of AhR for NMN-mediated inhibition of inflammatory response in macrophages AhR, a ligand-activated transcription factor, can mediate the anti-inflammatory function of NMN upon LPS treatment in RAW264.7 cells. Specifically, NMN reduces the expression of COX-2 in cells in bearing AHR. On the contrary. AhR inhibitor (CH223191) deprives the downregulation of IL-6, IL-1β and COX-2 caused by NMN treatment. Likewise, NMN treatment fails to reduce the expression levels of IL-6, IL-1β, and COX-2 in AhR knockout cells. 4. The importance of IDO1/kynurenine/AhR axis in the anti-inflammation function of NMN IDO1 is the rate-limiting enzyme in tryptophan catabolism to produce kynurenine, a metabolic intermediate in NAD+ de novo synthesis pathway. Kynurenine can promote the translocation of AhR from the cytoplasm to nucleus, thereby exerting an anti-inflammatory effect. NMN inhibits LPS-induced inflammation in a IDO1-kynurenine dependent manner in macrophages. 5. Conclusion NMN supplementation mitigates COX-2-associated inflammatory responses by activating lDO-kynurenine-AhR pathway, providing new insights into NAD* regulation in macrophage activation. Reference Liu J, Hou W, Zong Z, et al. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med. Published online February 8, 2024. doi:10.1016/j.freeradbiomed.2024.01.046 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

Do you have any question? Don't hesitate to contact us!