BONTAC | A brief introduction to nad powder

BONTAC | A brief introduction to nad powder

NAD plays a very critical role in a wide range of cellular reactions. The conversion of NAD from its oxidized form (NAD+) to its reduced form (NADH), and back, provides the cell with a mechanism for accepting and donating electrons. NAD+/NADH plays a significant role in the reactions associated with glycolysis, oxidative phosphorylation, and fermentation. Given its importance to cell function, it would be useful if there were a means of visualizing NADH in living cells. The work presented in this case study introduces a new tool for research in cell metabolism – a NADH fluorescent sensor. NAD powder generally tend to be the raw materials of health care products, cosmetic products, functional food additives and animals’ health products.
Get A Quote

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

about us

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Learn More

NAD powder manufacturing method

The preparation methods of NAD powder are mainly divided into chemical synthesis method and biocatalytic method, among which biocatalytic method includes biological fermentation method and enzyme catalysis method. Enzyme catalysis method has gradually become the mainstream direction because of its advantages of green, environmental protection and pollution-free. And then the purity of NAD powder will reach 99% after the procedure of further purifying. 

NAD powder manufacturing method

BONTAC NAD product features and advantages

1、Enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder 
2、High purity(up to 99%) and stability of production of NAD powder 
3、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NAD powder  
4、Multiple in vivo studies show that Bontac NAD powder is safe and effective
5、Provide one-stop product solution customization service

BONTAC NAD product features and advantages

NAD powder efficacy in health

Molecules that can be taken in supplement form to increase NAD levels in the body are referred to by some as “NAD boosters.” Studies conducted over the past six decades suggest that the following are some of the many benefits associated with taking an NAD supplement:
Can Help Restore Mitochondrial Function
Helps Repair Blood Vessels —A 2018 mice study found that supplementation could aid in repair and growth of aged blood vessels. There’s also some evidence it can help manage heart disease risk factors like high blood pressure and high cholesterol.
May Improve Muscle Function — One animal study conducted in 2016 found that degenerative muscles had improved muscle function when supplemented with NAD+ precursors.
Potentially Helps Repair Cells and Damaged DNA — Some studies have found evidence that NAD+ precursor supplementation leads to an increase in DNA damage repair. NAD+ is broken down into two component parts, nicotinamide and ADP-ribose, which combine with proteins to repair cells.
May Help Improve Cognitive Function — Several studies conducted on mice have found that mice treated with NAD+ precursors experienced improvements in cognitive function, learning and memory. Findings have led researchers to believe that NAD supplement may help protect against cognitive decline/Alzheimer’s disease.
May Help Prevent Age-Related Weight Gain — A 2012 study showed that when mice fed a high-fat diet were given an NAD supplement, they gained 60 percent less weight than they did on the same diets without the supplement. One reason this may be true is that nicotinamide adenine dinucleotide helps regulate production of stress- and appetite-related hormones, thanks to its effects on circadian rhythms.
Precursors are molecules used in chemical reactions inside the body to create other compounds. There are a number of precursors of NAD+ that result in higher levels when you consume enough of them.

NAD powder efficacy in health
User Reviews

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs
Frequently Asked Question

Do you have any question?

Nicotinamide adenine dinucleotide (NAD) has several essential roles in metabolism. It acts as a coenzyme in redox reactions, as a donor of ADP-ribose moieties in ADP-ribosylation reactions, as a precursor of the second messenger molecule cyclic ADP-ribose, as well as acting as a substrate for bacterial DNA ligases and a group of enzymes called sirtuins that use NAD+ to remove acetyl groups from proteins. In addition to these metabolic functions, NAD+ emerges as an adenine nucleotide that can be released from cells spontaneously and by regulated mechanisms, and can therefore have important extracellular roles.

First, inspect the factory. After some screening, NAD companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NAD powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NAD powder. If high purity NAD cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NAD powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.

The difference all comes down to the charge of these coenzymes. NAD+ is written with a superscript + sign because of the positive charge on one of its nitrogen atoms. It is the oxidized form of NAD. It’s considered “an oxidizing agent” because it accepts electrons from other molecules.
Although they are different chemically, these terms are mostly used interchangeably when discussing their health benefits. Another term you may come across is NADH, which stands for nicotinamide adenine dinucleotide (NAD) + hydrogen (H). This is also used interchangeably with NAD+ for the most part. Both are nicotinamide adenine dinucleotides that function as either hydride donors or hydride acceptors. The difference between these two is that that NADH becomes NAD+ after it donates an electron to another molecule.

Our updates and blog posts

Application Value of Ginsenoside Rg3 in Targeting BCSCs to Treat Breast Cancer

Introduction Ginsenoside Rg3 is Panaxanediol type tetracyclic triterpenoid saponin monomer extracted from the root of Panax ginseng, which has a wide range of pharmacological effects including anti-tumor, neuroprotection, cardiovascular protection, anti-fatigue, anti-oxidation, hypoglycemia, and enhancement of immune function. This research unveils the potential value of ginsenoside Rg3 in targeting breast cancer stem cells (BCSCs) to treat breast cancer, one of the most common tumor worldwide with significant morbidity and mortality. Ginsenoside Rg3 as anticancer adjuvant Ginsenoside Rg3 can promote the apoptosis of tumor cells, and inhibit tumor growth, infiltration, invasion, metastasis and neovascularization. At the same time, it has the effect of reducing toxicity, increasing efficacy in the joint application with chemotherapeutic drugs, improving immunity of the organism, and reversing multi-drug resistance of tumor cells. Shenyi capsule, a new anticancer drug with ginsenoside Rg3 monomer as the main component, was approved by China FDA and marketed in 2003, which is mainly used in the adjuvant treatment of various tumors. About BCSCs Breast cancer stem cells (BCSCs) are a group of undifferentiated cells with strong ability of self-renewal and differentiation, which is the main reason for poor clinical outcomes and poor efficacy. BCSCs can clonally proliferate under serum-free three-dimensional culture conditions and form mammospheres. BCSCs have specific surface markers (CD44, CD24, CD133, OCT4 and SOX2) or enzymes (ALDH1). BCSCs function as potential drivers of breast cancer, which are resistant to conventional breast cancer clinical treatments such as radiotherapy, leading to breast cancer recurrence and metastasis. The suppressive effect of ginsenoside Rg3 in the progression of breast cancer Ginsenoside Rg3 exerts inhibitory effects on the viability and clonogenicity of breast cancer cells in a time- and dose-dependent manner. In addition, it suppresses mammosphere formation, as evidenced by the spheroid number and diameter. Furthermore, ginsenoside Rg3 reduces the expression of stem cell-related factors (c-Myc, Oct4, Sox2, and Lin28), and decreases the ALDH (+) subpopulation breast cancer cells. Ginsenoside Rg3 as an accelerator of MYC mRNA degradation Ginsenoside Rg3 depresses BCSCs mainly through downregulating the expression of MYC, one of the main cancer stem cell reprogramming factors with a pivotal role in tumor initiation. Its regulatory effect on MYC mRNA stability is chiefly achieved by promoting the microRNA let-7 cluster. Under normal conditions, the let7 family is expressed at low levels in cancer cells, resulting in stable MYC mRNA expression and high c-Myc expression. However, Rg3 treatment leads to the upregulation of let-7 cluster, impairment of MYC mRNA stability, downregulation of c-Myc expression and inhibition of breast cancer stem-like properties. Conclusion The traditional Chinese herbal monomer ginsenoside Rg3 has the potential to suppress breast cancer stem-like properties by destabilizing MYC mRNA at the post-transcriptional level, showing great promise as adjuvant for the treatment of breast cancer. Reference Ning JY, Zhang ZH, Zhang J, Liu YM, Li GC, Wang AM, Li Y, Shan X, Wang JH, Zhang X, Zhao Y. Ginsenoside Rg3 decreases breast cancer stem-like phenotypes through impairing MYC mRNA stability. Am J Cancer Res. 2024 Feb 15;14(2):601-615. PMID: 38455405; PMCID: PMC10915333. BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible  for any claims, damages, losses, expenses, or costs whatsoever resulting or arising directly or indirectly from your reliance on the information and material on this website.

Delving into the Function of Ginsenoside Rh2 in the Develpoment of Breast Cancer

1. Introduction According to the 2020 report of World Health Organization (WHO), there are approximately 2.3 million cases with breast cancer worldwide. Breast cancer has emerged as one of the most malignant tumor in females with significant incidence rate. Although great progress has made in improving the cure rate of early-stage breast cancer in recent years, advanced breast cancer is still hard to be cured. How to reduce the risk of recurrence and metastasis of early-stage breast cancer as well as prolong the survival of patients with advanced breast cancer is still a challenge in the clinical treatment of breast cancer. Notably, ginsenoside Rh2 (GRh2) exerts prominent impacts on retarding the progression of breast cancer via strengthening the immune surveillance of natural killer (NK) cells, a kind of cytotoxic innate lymphocytes critical for tumor immune response. 2. The repressive role of GRh2 in the progression of breast cancer GRh2 hinders the growth, proliferation and metastasis of breast cancer. Simply put, the body weight and tumor volume of model mice are markedly reduced post treatment of GRh2 (10 mg/kg and 20 mg/kg). In addition, the proliferating rate of breast cancer cells is repressed by GRh2 in a dose-dependent manner (5, 10 and 20 mg/kg). Upon the treatment of GRh2 (20 mg/kg), the loss of lung capacity is obviously reduced and the lung metastases formed by MDA-MB-231 tumor cells are strikingly mitigated as well, with no apparent liver metastatic nodules. 3. The enhanced killing effect of NK cells on breast cancer cells following GRh2 treatment GRh2 exerts remarkable effects on retarding the progression of breast cancer via improving the killing ability of NK92MI cells. In a nutshell, the mRNA expression levels of killing mediators perforin and IFN-γ in NK92MI cell-breast cancer cell co-culture system are explicitly upregulated post GRh2 treatment. Strikingly, the reduced lung metastasis of breast cancer by GRh2 is almost counteracted upon the depletion of NK cells. Relative to that of the vehicle control, the amount of CD107a, a degranulation marker of NK cells, is overtly elevated in the presence of GRh2 (20 mg/kg), verifying the enhanced killing activity of NK cells on breast cancer.  4. The underlying molecular mechanism of GRh2 on potentiating the NK cell activity against breast cancer Breast cancer cells reduce the recognition by NKG2D through proteolytic shedding MICA mediated by ERp5 to escape NK cell surveillance. GRh2 interferes with the formation of soluble MICA (sMICA) by suppressing the expression of ERp5 to increase the contents of killing mediators from NK cells, thereby exerting striking effects on fighting against breast cancer. 5. Conclusion GRh2 potentiates the cytotoxic effect of NK cells and enhances the immune surveillance function of NK cells to fight against breast cancer, which may be a potent drug candidate for the prevention and treatment of breast cancer. Reference [1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660 [2] Yang C, Qian C, Zheng W, et al. Ginsenoside Rh2 enhances immune surveillance of natural killer (NK) cells via inhibition of ERp5 in breast cancer. Phytomedicine. 2024;123:155180. doi:10.1016/j.phymed.2023.155180 Product advantages of BONTAC ginsenoside Rh2 BONTAC is the first enterprise worldwide that can provide national mass production of ginsenosides (Rh2) by enzymatic synthesis, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.

A Scientific Method for Quantifying NMN in Biological Samples

1. Introduction Supplementation of nicotinamide mononucleotide (NMN) to upregulate the level of nicotinamide adenine dinucleotide (NAD+) has been unveiled to be a promising anti-aging intervention. However, it is still a serious challenge to accurately quantify NAD+ intermediates, NMN in particular. This study is powered to introduce a novel method, double isotope-mediated LC-MS/MS methodology (dimeLC-MS/MS), for the precise quantification of NMN in biological samples. 2. Factors affecting the accurate detection of NMN NMN is hard to be accurately detected due to its vulnerability to enzymatic degradation, conversion in sample processing, its complex behaviors in different column and extraction conditions, as well as matrix effect. Specifically, NMN has the properties of high polarity and low volatility, which is easy to dissolve in water but difficult to dissolve in organic solvents. These properties greatly restrict the application of many conventional quantitative analysis methods. Biological samples such as blood carries significant activities of CD38 and CD73 (ecto-5’-nucleotidase), both of which could use NMN as a substrate. The behavior of NMN in the column is very complex probably because of the bipartite nature of its charges so that subtle differences in extraction and column conditions significantly affect the reliable and accurate detection of NMN. 3. Coping strategies of dimeLC-MS/MS to reduce the impact of impact factors To avoid the interference of above-mentioned factors, a prototype column NMN-2 is applied. This column contains C18-based high-purity silica particles which are more capable of binding hydrophilic compounds than carbon particles, improving the ability of separation. Perchloric acid (PCA) is employed since it can efficiently extract NAD+ and NMN from biological samples such as plasma with minimal losses. To adjust for matrix effects, a fixed amount (1 μM) of each isotopic compound is added to biological samples prior to the PCA extraction. 4. The advantages of dimeLC-MS/MS Double isotopic NMN standards, NMN (M + 14) and NMN (M + 5), in the LC-MS/MS-driven methodology can precisely trace the fate of NMN during sample processing, which significantly increases the accuracy and the reliability of NMN measurement in biological samples. Besides, dimeLC-MS/MS can evaluate the extraction efficiency and the absolute concentrations of NMN in different types of biological samples. 5. Conclusion This new LC-MS/MS-driven methodology with double isotopic NMN standards can accurately and reliably measure NMN in biological samples. It can be used for future studies on NMN intake. 6. Reference Unno, Junya et al. “Absolute quantification of nicotinamide mononucleotide in biological samples by double isotope-mediated liquid chromatography-tandem mass spectrometry (dimeLC-MS/MS).” npj aging vol. 10,1 2. 2 Jan. 2024, doi:10.1038/s41514-023-00133-1 Why choose BONTAC? BONTAC is the leader of the global NMN industry. We have the first whole-enzyme catalysis technology in China, and have become the leading enterprise in coenzyme products which are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. Notably, BONTAC is NMN raw material supplier of famous David Sinclair team at the Harvard University. Our services and products are trustworthy. Furthermore, BONTAC has an independent coenzyme engineering technology research center at the provincial level in China and self-owned factories, where the purity ans stability of products can be ensured. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.

Get In Touch

Don't hesitate to contact with us

Sending your message. Please wait...