NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NAD Drip therapy, also known as IV NAD therapy, is gaining attention for its potential health benefits. In this comprehensive guide, we delve into the essential components of NAD Drip, including the standards for NAD drip materials, the role of NAD powder in the process, and its effectiveness in promoting overall well-being.
For an effective NAD Drip, ensuring the highest standards in material selection is paramount. IV bags, tubing, and other equipment must meet stringent quality standards to guarantee patient safety and the proper administration of NAD.
Safety protocols, including sterilization, must be rigorously maintained. The materials involved in the NAD Drip process should adhere to industry best practices for cleanliness and patient safety.
Trained healthcare professionals are essential for administering NAD Drip safely and effectively. Adequate training and certification of personnel are part of the materials standard.
NAD (Nicotinamide Adenine Dinucleotide) powder is a crucial component of NAD Drip therapy. It is a bioavailable form of NAD that is dissolved in a sterile saline solution for intravenous infusion.
The quality and purity of NAD powder are vital. The best NAD powder is produced using high-quality raw materials and rigorous manufacturing standards to ensure the absence of impurities or contaminants.
NAD Drip therapy can be tailored to individual needs through the precise control of NAD powder dosage. Customized dosages can be formulated based on a patient's specific requirements.
NAD Drip therapy is believed to enhance cellular energy production by increasing NAD levels in the body. This has potential benefits for overall vitality and performance.
NAD Drip therapy is also associated with potential anti-aging effects, as NAD plays a key role in DNA repair and cell rejuvenation.
Many individuals turn to NAD Drip therapy to support general wellness, particularly in conditions related to fatigue, oxidative stress, and age-related health concerns.
NAD Drip therapy is a promising avenue for those seeking to optimize their well-being. Ensuring the highest standards for NAD Drip materials, the quality of NAD powder, and understanding its potential effectiveness is essential for a safe and successful therapy experience.
1. Introduction According to the 2020 report of World Health Organization (WHO), there are approximately 2.3 million cases with breast cancer worldwide. Breast cancer has emerged as one of the most malignant tumor in females with significant incidence rate. Although great progress has made in improving the cure rate of early-stage breast cancer in recent years, advanced breast cancer is still hard to be cured. How to reduce the risk of recurrence and metastasis of early-stage breast cancer as well as prolong the survival of patients with advanced breast cancer is still a challenge in the clinical treatment of breast cancer. Notably, ginsenoside Rh2 (GRh2) exerts prominent impacts on retarding the progression of breast cancer via strengthening the immune surveillance of natural killer (NK) cells, a kind of cytotoxic innate lymphocytes critical for tumor immune response. 2. The repressive role of GRh2 in the progression of breast cancer GRh2 hinders the growth, proliferation and metastasis of breast cancer. Simply put, the body weight and tumor volume of model mice are markedly reduced post treatment of GRh2 (10 mg/kg and 20 mg/kg). In addition, the proliferating rate of breast cancer cells is repressed by GRh2 in a dose-dependent manner (5, 10 and 20 mg/kg). Upon the treatment of GRh2 (20 mg/kg), the loss of lung capacity is obviously reduced and the lung metastases formed by MDA-MB-231 tumor cells are strikingly mitigated as well, with no apparent liver metastatic nodules. 3. The enhanced killing effect of NK cells on breast cancer cells following GRh2 treatment GRh2 exerts remarkable effects on retarding the progression of breast cancer via improving the killing ability of NK92MI cells. In a nutshell, the mRNA expression levels of killing mediators perforin and IFN-γ in NK92MI cell-breast cancer cell co-culture system are explicitly upregulated post GRh2 treatment. Strikingly, the reduced lung metastasis of breast cancer by GRh2 is almost counteracted upon the depletion of NK cells. Relative to that of the vehicle control, the amount of CD107a, a degranulation marker of NK cells, is overtly elevated in the presence of GRh2 (20 mg/kg), verifying the enhanced killing activity of NK cells on breast cancer. 4. The underlying molecular mechanism of GRh2 on potentiating the NK cell activity against breast cancer Breast cancer cells reduce the recognition by NKG2D through proteolytic shedding MICA mediated by ERp5 to escape NK cell surveillance. GRh2 interferes with the formation of soluble MICA (sMICA) by suppressing the expression of ERp5 to increase the contents of killing mediators from NK cells, thereby exerting striking effects on fighting against breast cancer. 5. Conclusion GRh2 potentiates the cytotoxic effect of NK cells and enhances the immune surveillance function of NK cells to fight against breast cancer, which may be a potent drug candidate for the prevention and treatment of breast cancer. Reference [1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660 [2] Yang C, Qian C, Zheng W, et al. Ginsenoside Rh2 enhances immune surveillance of natural killer (NK) cells via inhibition of ERp5 in breast cancer. Phytomedicine. 2024;123:155180. doi:10.1016/j.phymed.2023.155180 Product advantages of BONTAC ginsenoside Rh2 BONTAC is the first enterprise worldwide that can provide national mass production of ginsenosides (Rh2) by enzymatic synthesis, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.
Bontac in Boao Health Food Science Conference & Expo(FHE) From 22 to 25 February 2023, the Boao Health Food Science Conference and Expo was successfully held at the permanent venue of the Boao Forum for Asia in Hainan, China. This international conference build an international platform for exchange and cooperation among government, academia, industry, and industry, academia and research, which aims to promote the development of the health food industry through the exchange of scientific information at home and abroad. Bontac performace in FHE The conference gathered several prominent scientists including 10 academicians, over 200 experts and scholars, and invited many popular food enterprises likely Nestle, Pepsi from the United States, Europe, Japan, Australia, New Zealand and other countries. More importantly, exhibition featured a number of high-tech companies that focus on high-tech development of the production of nutritious and healthy food products. As one of the high-tech companies attending the exhibition, Bontac, which has obtained over 160 international patents and is committed to the design of new biosynthetic pathways to explore and mass-produce natural products for food ingredients, was invited to attend the conference and companies vital stake holders to deliver academic views on the technological innovation and healthy development of the food industry. Figure 1: Xinhua Officical Record for Bontac in FHE Bontac Products in FHE Expo Bontac main products starring NMN, rare ginsenosides, NAD, NADH and NADPH were all present at booth C34 in FHE Expo. And that booth C34 attracted lots of exhibitors to consult who communicated with each other upon appearance owing to the obvious striking advantages likely Bontac manufacture technology of whole coenzyme, sustainable supply chain, complete quality system and environment-protection and energy-saving preparation. What’s more, the academician of the Chinese Academy of Engineering and Chairman of FHE, Chen Junshi also visited Bontac booth and highly commend on the Bontac performance and demonstration. Figure 2: Chen Visited Bontac Booth in FHE Bontac recognizes the importance of the upstream of raw material side in biotechnology as the key to product innovation. On the other hand, with the increasingly demand for high-quality food, synthetic biotechnology stands on the point of the potential to provide consumers with greener and healthier food ingredients. Therefore, as far as Bontac is concerned, developing and shaping innovative technology ownership supports to effectively solving the problem of insufficient plant and animal extracts, reducing the environmental burden, and contributing to carbon neutrality and human sustainable development. At present, Bontac has already launched industrialized stevioside and rare ginsenoside which can be utilized in the field of health food. In future, Bontac will set up more product lines for more raw materials with higher purity and better quality as health food ingredients. Bontac honor time in FHE It was great honor for Bontac to win innovative product enterprise award, which identified Bontac long-term commitment to the exploration and innovation of synthetic biology and health technology products. Furthermore, it also reflects the R&D capability and innovation ability of Bontac in the field of synthetic biology, which will surely inspire Bontac to invest more actively in R&D and innovation. Figure 3: Bontac Award in FHE Dr. Qi Zhang, Founder and Chief Scientist of Bontac, delivered a speech entitled Efficient Green Biosynthesis of Ginsenosides, NMN and other Natural Products at the Innovative Technology and Innovative Manufacturing forum, explaining the green safety, wide applicability and innovative value of synthetic biotechnology from the theoretical source. Figure 4: Dr. Zhang in FHE Dr. Zhang demonstrated that Bontac holds up on the technology of biosynthesis of coenzyme preparation for natural products such as ginsenosides, especially rare ginsenosides Rh2 and Rg3. The advantages focuses on breaking through the limitations of raw materials, facilitating industrial scale-up, shorting reaction cycle, milder conditions, green environment and energy saving, but maintains the point of sustainable development. On the 23rd, a roundtable discussion on the "Technology and Investment in the Food Industry". Shu Shangke, Chairman of Bontac, attended the forum on the theme of Technology and Investment in the Food Industry and said that synthetic biotechnology is bringing about a revolution in the food and pharmaceutical fields, pushing these fields to iterate and upgrade. In the food industry, having strong R&D strength, leading technology and abundant patents are important factors for a company to have core competitiveness and investment value. Figure 5: Shu in FHE
Introduction Cardiovascular diseases (CVD) poses huge economic burden and great threat to the life of patients, even surpassing Alzheimer's disease and diabetes. 17.9 million people in the world die from CVD, with indirect treatment costs of $237 billion per year, which are projected to increase to $368 billion by 2035. It has been reported that the deficiency or imbalance of oxidized nicotinamide adenine dinucleotide phosphate (NADP+)/reduced nicotinamide adenine dinucleotide phosphate (NADPH) redox couple has been linked to a variety of pathological conditions including CVD. NADP(H) redox couple as cofactor/electron carrier in cardiommyocytes NADPH is an essential cofactor of glutathione reductase (GR) and thioredoxin reductase (TRs) in cardiommyocytes, with a crucial role in maintaining cellular redox homeostasis and energy metabolism. GR catalyzes the recycling of Glutathion (GSH) from oxidized glutathione (GSSG), and TRs reduces oxidized Trx-S2 into Trx-(SH)2. Simultaneously, both enzymes require NADPH as an electron donor and oxidize it to NADP+. Once O2•− is formed, for example, from NOXs in the cytosol and from mitochondrial electron transport chain (ETC), cytosolic CuZnSOD and mitochondrial MnSOD will reduce it to H2O2. GSH can be used by glutathione peroxidase (GPx) to reduce H2O2 further to water. Trx-(SH)2 provides reducing equivalents for Prx in the removal of H2O2. The connection of NADP(H) with cardiovascular pathologies NADP(H) plays a dual role in cardiovascular pathologies. On the one hand, the reduced NADPH can result in significant antioxidant deficiencies and intracellular accumulation of free radicals, which triggers lipid peroxidation, inflammation, and vascular dysfunction, ultimately exacerbating the course of atherosclerosisoxidase. On the other hand, high NADPH level can give rise to myocardial injury by inducing reductive stress and enhancing reactive oxygen species (ROS) production. Conclusion Changes in cellular NADP(H) content affect the intermediary metabolism of cardiac function, especially in diseased myocardium. Maintaining the balance between NADP+ and NADPH in cardiommyocytes is critically important for the treatment of CVD. Either deficiency or excess NADP(H) levels can lead to imbalances in cellular redox state and metabolic homeostasis, resulting in energy stress, redox stress, and ultimately disease state. NADP(H) has an important therapeutic value in CVD. Reference Sun Y, Wu D, Hu Q. NADP+/NADPH in Metabolism and its Relation to Cardiovascular Pathologies. Curr Med Chem. Published online February 16, 2024. doi:10.2174/0109298673275187231121054541 BONTAC NADP(H) BONTAC has dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NADP(H). Bonzyme whole-enzymatic method is adopted, which is environmental-friendly, with no harmful solvent residues. The purity of NADP and NADPH can reach up to 95% and 98%, respectively, which is benefited from the exclusive Bonpure seven-step purification technology. BONTAC has self-owned factories and has obtained a number of international certifications, where high quality and stable supply of products can be ensured. BONTAC has four domestic and foreign NADPH patents, leading the industry. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.