NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
Molecules that can be taken in supplement form to increase NAD levels in the body are referred to by some as “NAD boosters.” Studies conducted over the past six decades suggest that the following are some of the many benefits associated with taking an NAD supplement:
Can Help Restore Mitochondrial Function
Helps Repair Blood Vessels —A 2018 mice study found that supplementation could aid in repair and growth of aged blood vessels. There’s also some evidence it can help manage heart disease risk factors like high blood pressure and high cholesterol.
May Improve Muscle Function — One animal study conducted in 2016 found that degenerative muscles had improved muscle function when supplemented with NAD+ precursors.
Potentially Helps Repair Cells and Damaged DNA — Some studies have found evidence that NAD+ precursor supplementation leads to an increase in DNA damage repair. NAD+ is broken down into two component parts, nicotinamide and ADP-ribose, which combine with proteins to repair cells.
May Help Improve Cognitive Function — Several studies conducted on mice have found that mice treated with NAD+ precursors experienced improvements in cognitive function, learning and memory. Findings have led researchers to believe that NAD supplement may help protect against cognitive decline/Alzheimer’s disease.
May Help Prevent Age-Related Weight Gain — A 2012 study showed that when mice fed a high-fat diet were given an NAD supplement, they gained 60 percent less weight than they did on the same diets without the supplement. One reason this may be true is that nicotinamide adenine dinucleotide helps regulate production of stress- and appetite-related hormones, thanks to its effects on circadian rhythms.
Precursors are molecules used in chemical reactions inside the body to create other compounds. There are a number of precursors of NAD+ that result in higher levels when you consume enough of them.
1、Enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、High purity(up to 99%) and stability of production of NAD powder
3、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NAD powder
4、Multiple in vivo studies show that Bontac NAD powder is safe and effective
5、Provide one-stop product solution customization service
The preparation methods of NAD powder are mainly divided into chemical synthesis method and biocatalytic method, among which biocatalytic method includes biological fermentation method and enzyme catalysis method. Enzyme catalysis method has gradually become the mainstream direction because of its advantages of green, environmental protection and pollution-free. And then the purity of NAD powder will reach 99% after the procedure of further purifying.
Nicotinamide adenine dinucleotide (NAD) has several essential roles in metabolism. It acts as a coenzyme in redox reactions, as a donor of ADP-ribose moieties in ADP-ribosylation reactions, as a precursor of the second messenger molecule cyclic ADP-ribose, as well as acting as a substrate for bacterial DNA ligases and a group of enzymes called sirtuins that use NAD+ to remove acetyl groups from proteins. In addition to these metabolic functions, NAD+ emerges as an adenine nucleotide that can be released from cells spontaneously and by regulated mechanisms, and can therefore have important extracellular roles.
First, inspect the factory. After some screening, NAD companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NAD powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NAD powder. If high purity NAD cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NAD powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
The difference all comes down to the charge of these coenzymes. NAD+ is written with a superscript + sign because of the positive charge on one of its nitrogen atoms. It is the oxidized form of NAD. It’s considered “an oxidizing agent” because it accepts electrons from other molecules.
Although they are different chemically, these terms are mostly used interchangeably when discussing their health benefits. Another term you may come across is NADH, which stands for nicotinamide adenine dinucleotide (NAD) + hydrogen (H). This is also used interchangeably with NAD+ for the most part. Both are nicotinamide adenine dinucleotides that function as either hydride donors or hydride acceptors. The difference between these two is that that NADH becomes NAD+ after it donates an electron to another molecule.
Introduction Wound healing is a sophisticated process responding to tissue damage, which is associated with numbers of interaction of various cell types, cytokines, growth factors, and other molecules. Strikingly, increasing the nicotinamide adenine dinucleotide (NAD) pool by nicotinamide riboside (NR) can accelerate wound healing and macrophage migration, which is partially achieved through PGE2 synthesis and signaling as well as the function of the NAD+-dependent sirtuin, SIRT3. Regulatory effects of NR on the expression of M1 macrophage markers in human MDMs. NR could modulate the expression levels of canonical M1 (inflammatory phenotype) and M2 (reparative phenotype) cell surface markers during macrophage polarization. With a great detail, a significant downregulation in CD64 and a obvious upregulation of CD197/CCR7 are viewed in the polarized M1 cells incubated with NR. Furthermore, NR increases CD197/CCR7-mediated M1 macrophage migration. The significance of chemotaxis mediator PGE2 in NR-regulated macrophage migration NR-mediated upregulation of macrophage migration through CCL19/CCR7 is dependent on the synthesis of PGE2, an inflammatory lipid mediator in the eicosanoid family. Concretely, NR administration increases the PGE2 level in cultured human monocytes, MDMs, and human serum. In addition, NR-mediated increases in CCR7 expression and CCL19-induced migration are attenuated by PGE2 synthesis blockers. NR/SIRT3/migration axis in human M1 MDMs NR facilitates collective cell migration at a SIRT3-dependent manner in human M1 MDMs during wound healing. Simply put, the degree of wound healing is compared on Day 0 and Day 2 in vehicle- or NR-treated human M1 MDMs. It is found that NR increases the relative degree of migration (relative wound healing) and the rate of wound confluence in the presence of CCL19. Besides, the relative degree of wound density (migration) is blunted by SIRT3 knockdown, while being enhanced by SIRT3 overexpression. Application prospect of NR in wound healing Chronic diabetes is often accompanied with poor wound healing. For instance, diabetic foot ulcers, one of the chief cause of amputations, affect 15% of people with diabetes. Given that NR can drive the macrophage migration to boost chronic wound healing, it may have a broad application prospect in treating the wounds including but not limited to diabetic patients. Conclusion In human macrophages, NR induces surface expression of the chemotaxis CD197/CCR7 receptor and levels of its lipid mediator PGE2 via upregulation of cyclooxygenase 2 and functionally increases macrophage migration and wound healing in a SIRT3-dependent manner. Reference Wu J, Bley M, Steans RS, et al. Nicotinamide Riboside Augments Human Macrophage Migration via SIRT3-Mediated Prostaglandin E2 Signaling. Cells. 2024;13(5):455. Published 2024 Mar 5. doi:10.3390/cells13050455 BONTAC NR BONTAC is one of the few suppliers in China that can launch mass production of raw materials for NR, with self-owned factory and professional R&D team. Up till now, there are 173 BONTAC patents. BONTAC provides one-stop service for customized products. Both malate and chloride salt forms of NR are available. By dirt of unique Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method, the product content and conversion rate can be maintained in a higher level. The purity of BONTAC NR can reach above 97%. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Oxidized form of nicotinamide adenine dinucleotide (NAD+) and its precursor nicotinamide mononucleotide (NMN) have been uncovered to restore DNA repair and prevent cancer progression via the deleted in breast cancer 1 (DBC1). This research is committed to deciphering the detailed molecular mechanisms. About DBC1 DBC1 is a nuclear protein initially cloned from a human chromosome 8p21 region, which can modulate diversified targets by protein-protein interaction, contributing to various cellular processes such as apoptosis, DNA repair, senescence, transcription, metabolism, circadian cycle, epigenetic regulation, cell proliferation, and tumorigenesis. The affinity and molecular binding mechanisms between NAD+/NMN and DBC1354–396 Under the help of nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments, it is verified that both NAD+ and NMN have a binding relationship with the NHD domain of DBC1. Specifically, NAD+ interacts with DBC1354-396 through hydrogen bonds, with a binding affinity (8.99 μM) nearly twice that of NMN (17.0 μM) and the key binding sites are primarily residues E363 and D372. The vital roles of E363 and D372 mutagenesis in ligand-protein interaction The N-terminal loop of DBC1354-396 encloses the small ligand within a local space, anchoring NAD+ and NMN to the protein through key amino acid residues E363 and D372 via hydrogen bonding. Conclusion Both NAD+ and its precursor NMN can bind to DBC1's NHD domain (DBC1354–396) at key sites E363 and D372, providing novel clues for the development of targeted therapies and drug research on DBC1-associated disease including tumors. Reference Ou L, Zhao X, Wu IJ, et al. Molecular mechanism of NAD+ and NMN binding to the Nudix homology domains of DBC1. Int J Biol Macromol. Published online February 12, 2024. doi:10.1016/j.ijbiomac.2024.130131 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction The crucial parts of nicotinamide adenine dinucleotide (NAD+) and its metabolites in aging and neurodegeneration have been widely recognized. To spur progress toward biochemical research and interventions targeting aging and neurodegenerative diseases, it is of great significance to accurately quantify NAD+ and its metabolite levels in the NAD+ salvage pathway. Here, a robust and accurate LC-MS/MS method is applied to quantify NAD+ and its metabolites levels in normal and injured mouse sciatic nerve. Limitations of existing methods for quantifying NAD+ and its metabolites Traditional methods for quantifying NAD+ and its metabolites, such as HPLC-UV, NMR, capillary zone electrophoresis, or colorimetric enzymatic assays, face various challenges in sensitivity, selectivity, and indirect measurement. As for existing LC-MS/MS assays for cellular or tissue NAD+ and its metabolites measurements, there are still many difficulties to overcome, such as extended run times, poor chromatographic retention behavior, and unsatisfactory peak shapes. Moreover, only one to three substances in the NAD+ salvage pathway can be covered by these methods. The modifications of LC-MS/MS method On the basis of existing LC-MS/MS assays, the modifications regarding the chromatographic conditions, surrogate matrix and MS/MS conditions are conducted. Specifically, 5 μM of methylene phosphonic acid is employed as the mobile phase additive, which explicitly promotes the signal intensity and peak shape. Given the relatively clean and simple nature of never samples and their small size, ultrapure water is tested as a substitute matrix. Instead of hydrophilic interaction liquid chromatography column and hypercarb column, the Waters Atlantis Premier BEH C18 AX column is utilized, whose unique MaxPeak HPS high-performance surface technology (passivating the column inner wall, eliminating metal surface) enables the high reproducibility, peak symmetry, and baseline separation of all analytes. Besides, MS conditions are optimized to minimize the NAD+ interference signal in the cyclic adenosine diphosphate ribose (cADPR) channel while maintaining the response of cADPR and nicotinamide mononucleotide (NMN), with 4000V for ion spray voltage, 450℃ for turbo heater temperature, 50 psi for Gas 1, 50 psi for Gas 2, 30 psi for curtain gas, and 12 psi for collision gas. Representative chromatogram of nerve samples (normal vs injured) All five analytes achieve baseline separation, where cADPR is a sensitive biomarker in the neurodegeneration model. Herein, sciatic nerve axotomy induces axonal degeneration, leading to reduced NAD+ level and elevated NMN level in the injured nerves, resulting in about a 2-fold increase in the NMN/NAD+ ratio. Simultaneously, the levels of nicotinamide (NAM) and adenosine diphosphate ribose (ADPR), are decreased by about 2-fold, while cADPR level is increased by more than 8-fold. These results are consistent with those of previously reported research, verifying the accuracy of this modified LS-MS/MS method in quantifying NAD+ and its metabolites. Conclusion This modified LC-MS/MS method enables effective baseline separation of NAD+, NMN, NAM, ADPR, and cADPR within a brief runtime of 5 min, which is contributive to early diagnoses of various neurological disorders and drug development for aging and neurodegenerative diseases. Reference Ma Y, Deng L, Du Z. Development and validation of an LC-MS/MS method for quantifying NAD+ and related metabolites in mice sciatic nerves and its application to a nerve injury animal model. J Chromatogr A. doi:10.1016/j.chroma.2024.464821 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR). There are various types of NAD to be selected, encompassing NAD ER Grade (endoxin removal), NAD Grade I (IVD/dietary supplement/cosmetics raw powder), NAD Grade II (API/intermediates) and NAD Grade IV (if any higher requirement on the solubility), which can be provided in the form of lyophilized powder or crystalline powder. The purity of BONTAC NAD can reach above 98%. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses or costs resulting or arising directly or indirectly from your reliance on the information and material on this website.