NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
When applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective , as at 500 µM concentration, it achieved “an almost 10-fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
1. "Bonzyme" Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3. Exclusive “Bonpure” seven-step purification technology, high purity (up to 99%) and stability of production of NMNH powder
4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5. Provide one-stop product solution customization service
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme becomes the mainstream method owing to the advantages of pollution free, high level of purity and
NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.
Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction Alpers' disease is both a neurodegenerative disorder and a metabolic disorder, which is tightly linked to mitochondrial dysfunction and mutations in the catalytic subunit of polymerase gamma (POLG) gene. Noteworthily, supplementation of NAD precursor, nicotinamide riboside (NR), is evidenced to explicitly ameliorate mitochondrial defects in cortical organoids of patients with Alpers' disease. About Alpers’ disease Alpers’ disease is an autosomal recessive disorder, which is often accompanied with cortical neuronal loss as well as depletion of mitochondrial DNA (mtDNA) and complex I (CI). The disease occurs in about 1 in 100,000 newborns. Most individuals with Alpers’ disease show no symptoms at birth. Diagnosis is generally established by determining the POLG gene. Once onset (usually between first and third years of life), patients may present the symptoms such as progressive encephalopathy, epilepsy, myoclonus, and myasthenia gravis. Currently, there is no effective method to cure this disease. Establishment of Alpers' disease model in vitro Induced pluripotent stem cells (iPSCs) are generated from Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), followed by differentiation into cortical organoids and neural stem cells (NSCs). Alpers's iPSCs exhibit mild mitochondrial alterations, including an elevated L-lactate level and a depletion of CI. Alpers' NSCs manifest profound mtDNA depletion and mitochondrial dysfunction. Alpers' cortical organoids demonstrate cortical neuronal loss and astrocyte accumulation. The role of NR in Alpers' cortical organoids Long-term treatment with NR partially ameliorates the neurodegenerative alterations observed in Alpers' cortical organoids. Specifically, supplementation of NR effectively counteracts neuronal loss, glial enrichment, and mitochondrial damage observed in cortical organoids of patients with Alpers' disease. Reversal of the dysregulated pathways in Alpers' patient organoids post NR treatment NR treatment offsets the downregulation of mitochondrial and synaptogenesis-related pathways, as well as upregulation of pathways associated with astrocyte/glial cells and neuroinflammation are obviously activated in Alpers' cortical organoids. Conclusion Replenishment of NR to increase NAD level can rescue mitochondrial defects and neuronal loss in iPSC-derived cortical organoid of Alpers’ disease, with relatively high safety and bioavailability, showing great promise as a therapeutic candidate for this intractable disorder. Reference Hong Y, Zhang Z, Yangzom T, et al. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC derived Cortical Organoid of Alpers' Disease. Int J Biol Sci. 2024;20(4):1194-1217. Published 2024 Jan 25. doi:10.7150/ijbs.91624 BONTAC NR BONTAC is one of the few suppliers in China that can launch mass production of raw materials for NR, with self-owned factory and professional R&D team. Up till now, there are 173 BONTAC patents. BONTAC provides one-stop service for customized products. Both malate and chloride salt forms of NR are available. By dirt of unique Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method, the product content and conversion rate can be maintained in a higher level. The purity of BONTAC NR can reach above 97%. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The opinions expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Triocresyl phosphate (TOCP) is widely used in the realm of industry and agriculture in the last century. However, it is subsequently banned due to the increasing understanding of its toxicity. In the 21st century, TOCP comes back into the limelight as the aviation industry springs up. This research uncovers the adverse effects of TOCP on the reproductive system. Notably, nicotinamide mononucleotide (NMN), a crucial intermediate in the generation of NAD+, may serve as a therapeutic intervention to attenuate the oocyte damage caused by TOCP. About TOCP TOCP, a classic aromatic organophosphate ester, generally functions as flame retardant, plasticizer, lubricant, and jet fuel additive due to its chemical and thermal stability. At room temperature, TOCP is an odorless, yellowish transparent liquid. It is insoluble in water, but soluble in organic solvents such as alcohol, ether and benzene. In addition to its use in aviation industry, TOCP is currently applied in the manufacturing of construction materials such as plastics, furniture, textiles, printed circuit boards, and insulation. The negative roles of TOCP in oocytes Through the analyses of germinal vesicle breakdown (GVBD) and polar body extrusion (PBE), it is discovered that TOCP impedes the maturation process of oocyte meiotic division, suppressing the reinitiation of oocytes and the final extrusion of the first polar body. Remarkably, maturation of oocytes is deemed as a critical prerequisite for successful fertilization and subsequent embryonic development. Besides, it triggers disturbances in the cytoskeleton of oocytes and affects the distribution and functionality of mitochondria. Furthermore, exposure to TOCP alters the genes related to histone modification in oocytes, as manifested by the elevated levels of histone methylation at H3K9me3 and H3K27me3. The reversing effects of NMN on TOCP in oocytes Replenishing NMN partially restores the spindle/chromosome structure as well as the attachment of microtubules to centromeres, and stabilizes the distribution of actin filaments, thereby maintaining chromosomal integrity and supporting the nuclear maturation process of oocytes. Meanwhile, NMN is also effective in rescuing mitochondrial dysfunction induced by TOCP, which restores membrane potential and ATP levels, reduces excessive ROS production, prevents DNA damage, and hinders cell apoptosis as well as epigenetic alterations. Conclusion Nicotinamide mononucleotide maintains cytoskeletal stability and fortifies mitochondrial function to mitigate oocyte damage induced by TOCP, signifying its potential application value in refining reproductive therapeutic strategies. Reference Meng F, Zhang Y, Du J, et al. Nicotinamide mononucleotide maintains cytoskeletal stability and fortifies mitochondrial function to mitigate oocyte damage induced by Triocresyl phosphate. Ecotoxicol Environ Saf. 2024;275:116264. doi:10.1016/j.ecoenv.2024.116264 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction In light of a statistics report by World Health Organization (WHO), there are 18 million people suffering from rheumatoid arthritis (RA) worldwide in 2019, where the prevalence of female is 2.5 times that of male. This disorder greatly affects the life quality of patients and even causes disability in severe case. Noteworthily, mesenchymal stem cell-derived exosome (MSCs-exo) in combination with ginsenoside Rh2 has been unveiled to be effective in alleviating RA symptoms, holding a great promise as an adjuvant drug for RA. About RA RA represents a chronic autoimmune disease generally occurring in middle age, which is chiefly featured by vascular proliferation, synovium inflammation and the stiffness/swelling/deformation/pain of one or more joints. At present, the treatment of RA relies on corticosteroids, nonsteroidal anti-inflammatory drugs, synthetic disease-modifying anti-rheumatic drugs, and biological agents. Yet, long-term use of these drugs may be accompanied with various adverse effects such as infection, liver damage, gastrointestinal damage, and heart failure. MSCs vs. MSCs-exo MSCs, with multiple differentiation potential, can reduce joint inflammation in RA. Nevertheless, there are potential risks such as immunogenicity, heterogeneity of different batches of cells, tumorigenicity, and ethical issues, limiting the application of MSCs. MSCs-exo is small extracellular vesicle secreted by MSCs, whose diameter ranges from 30 to 150 nanometers. It can carry biologically active substances such as nucleic acids and small molecules, fulfilling the function of MSCs. Relative to MSCs, MSCs-exo has low immunogenicity and has no risk of tumor formation and ethical constraints. Research protocol A collagen-induced arthritis (CIA) model is constructed in rats, followed by the treatment of phosphate-buffered saline or single/combined therapy of MSCs-exo and ginsenoside Rh2. The rat fences are collected for 16 rRNA amplification sequencing and untargeted metabolomics analysis. Significant efficacy of MSCs-exo combined with ginsenoside Rh2 in RA The combined therapy of MSCs-exo and ginsenoside Rh2, to a large extent, ameliorates RA symptoms in CIA model rats, as manifested by the reduction of joint swelling as well as significant decline in arthritis score and paw thickness. Meanwhile, the histopathological changes in CIA model rats are apparently improved. Rh2 enhances the ability of MSC-exo to suppress the expression of inflammatory factors in synovium and cartilage of CIA model rats, as evidenced by the downregulation of TNF-α, IL-1β and IL-6 as well as upregulation of IL-10 in exo+Rh2 group. Besides, bone erosion in the ankle joints of CIA rats is improved, as attested by the obvious increases in BMD and Tb.Th, as well as prominent decreases in BS/BV and Tb.Sp in exo+Rh2 group. Essential role of gut-joint axis in RA Gut microbiota and metabolites have been deemed to be critical in developing RA. Strikingly, MSCs-exo and Rh2 can significantly ameliorate the disturbed gut microbiota in CIA model rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb may be the most pivotal. Concretely, Candidatus_Saccharibacteria modulates the metabolic pathway of vitamin digestion and absorption by pantothenic acid and vitamin D3 alterations. As for Clostridium_XlVb, it regulates 16(R)-HETE alterations in the arachidonic acid metabolic pathway. Conclusion MSCs-exo and Rh2 act synergistically to ameliorate RA by modulating the gut microbiota and metabolites, especially the reshaping of Candidatus_Saccharibacteria and Clostridium_XlVb abundance. Reference Zhou Z, Li Y, Wu S, et al. Host-microbiota interactions in collagen-induced arthritis rats treated with human umbilical cord mesenchymal stem cell exosome and ginsenoside Rh2. Biomed Pharmacother. Published online April 2, 2024. doi:10.1016/j.biopha.2024.116515 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be responsible or liable in any way for any claims, damages, losses, expenses, or costs arising directly or indirectly from your reliance on the information and material on this website.