NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NMN supplement is a nutritional supplement, a metabolite naturally occurring in plants and animals, which mainly consists of the precursor of the coenzyme NAD+. NMN is a substance that can be supplemented to increase NAD+ levels. NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. NMN supplementation is thought to increase NAD+ levels, improve metabolic disease, and delay aging.
Introduction Rare ginsenoside Rg3, an active extract from Panax ginseng, is reported to possess a wide range of pharmacological properties including anti-angiogenesis and anti-cancer, with high lipophilicity (estimated log P4) and a low water solubility at pH7.4. Nevertheless, its permeability and bioavailability are relatively low, and production procedures are complex. Remarkably, the metabolites of Rg3 have similar and even stronger activity than Rg3, opening up new opportunities for future adjuvant cancer therapy. The association of ginsenoside Rg3 and its metabolites There are two epimers of ginsenoside Rg3, which can be subsequently deglycosylated into epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The anti-cancer properties of Rg3 metabolites Angiogenesis and tumor cell proliferation are both interdependent factors in tumor progression. In terms of anti-proliferation, Rg3 metabolites, who induce S-phase arrest and necroptosis in a human triple negative breast cancer cell line MDA-MB-231 as well as G0/G1 arrest and apoptosis in human umbilical vein endothelial cells (HUVECs), are more potent than Rg3. The clinically relevant target of Rg3 metabolites are the endothelial cells. Anti-angiogenic effects are evaluated using loop formation assay. Among Rg3 metabolites, S-Rh2 is the most potent inhibitor of loop formation. VEGFR2 and AQP1 as the targets of Rh2 According to the prediction by in silico molecular docking, there is a good binding score between Rh2/PPD and the ATP-binding pocket of VEGFR2, a dominant regulator controlling both physiological and pathological angiogenesis. Through VEGF bioassay, it is discovered that S-Rh2 is a most potent anti-angiogenic candidate with allosteric modulatory action on VEGFR2 function. In addition, Rh2 and PPD have the potential of blocking AQP1 and AQP5, two members of the aquaporin family with vital roles in proliferation, migration, invasion and angiogenesis. Moreover, Rg3 is more selective for AQP1 and does not show a good binding score with AQP5. In light of this, blocking the water channel function of AQP1 may have an immediate role in inhibition of loop formation and anti-angiogenic effects of Rh2. Conclusion Metabolites of Rg3 could potentially increase the anti-cancer properties of Rg3. The application of these molecules alone or together may be potent alternatives for future adjuvant cancer therapy. Reference Nakhjavani M, Smith E, Yeo K, et al. Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3. J Ginseng Res. 2024;48(2):171-180. doi:10.1016/j.jgr.2021.05.008 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction NADH (reduced form of NAD+) serves as a carrier of biological hydrogen and an electron donor, which participates in diverse physiological processes such as protein synthesis, DNA repair, insulin synthesis and secretion, immune response and cell division, playing a critical role in promoting health span and mitigating various disease states. Major enzymatic reactions in substrate metabolism that are dependent upon NAD+/NADH ratio The equilibrium of the NAD+/NADH ratio is vital for maintaining cellular reduction–oxidation (redox) homeostasis and modulating energy metabolism. Several enzymatic reactions in substrate metabolism are carried out in a NAD+/NADH ratio-dependent way. For instance, ketones suppress the increased mitochondrial production of ROS associated with excitotoxic injury by enhancing NADH oxidation (i.e. elevated NAD+/NADH ratio) in the electron transport chain, directly affecting NADH level . NADH in Krebs cycle and glycolysis NADH is produced in glycolysis and the Krebs cycle (also known as citric acid cycle or tricarboxylic acid cycle), which can transfer energy to supply ATP synthesis through the process of oxidative phosphorylation in the inner membrane of the mitochondria. Krebs cycle supplies NADH as an electron carrier to the electron transport chain in mitochondria, while glycolysis-produced NADH can be used by L-lactate dehydrogenase (LDH) or transported to the mitochondria for redox homeostasis. The effects of NADH on the mitochondria are accomplished by specialized shuttle systems (e.g., malate-aspartate or glycerol-3-phosphate). The possible strategies to modulate NADH level The main NAD/NADH biosynthetic pathways include de novo synthesis from tryptophan (TRP), synthesis from either form of vitamin B3, nicotinamide (NAM) or nicotinic acid (NA), or conversion of nicotinamide riboside (NR). Correspondingly, NADH level can be regulated by replenishing NADH precursors (eg. NR and NMN), applying NADH dehydrogenase inhibitors, having diets rich in certain nutrients (eg. vitamin B3), administrating mitochondrial targeting agents and supplementing exogenous NADH. Conclusion NADH may be a versatile therapeutic candidate by leverage of its ability to affect redox homeostasis, mitochondrial functions, and enzymatic reactions. Reference Schiuma G, Lara D, Clement J, Narducci M, Rizzo R. NADH: the redox sensor in aging-related disorders. Antioxid Redox Signal. Published online February 17, 2024. doi:10.1089/ars.2023.0375 BONTAC NADH BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories and over 170 global patents including 8 NADH patents. The purity of BONTAC NADH can reach over 98%. BONTAC NADH has been widely applied in anti-aging health products, diagnostic reagent raw materials, HCY Homocysteine Test Kit, Biomedical R&D, and functional food and beverage. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Rare ginsenosides, a group of dammarane triterpenoids that exist in low natural abundance, fuels a high concern from scholars recently, showing great potential as shining components in drugs and nutraceuticals. 2. The difference between primary ginsenosides and rare ginsenosides Ginsenosides are chiefly extracted from the plants of Araliaceae such as Panax ginseng, Panax notoginseng, and Panax quinquefolius. In light of their natural abundance, ginsenosides are usually divided into macro (primary) saponins (ginsenosides Rb1, Rg1, Re, Rd, etc.) and rare (secondary) ginsenosides (Rg5, Rk1, Rg3, etc). Relative to primary ginsenosides, rare ginsenosides are easy to be absorbed by human body, with much higher biological activity, membrane permeability and bioavailability. 3. The stereochemistry properties of rare ginsenosides The stereochemistry-driven difference in bioactivities is mostly focused on the 20(S/R)-Rg3 and 20(S/R)-Rh2 epimers. The stereochemistry properties confer rare ginsenosides with diverse bioactivities. Typically, the crucial factors that contribute to the efficacy of rare ginsenosises encompass the number of sugar molecules, sugar linkage and double bonds within C-17 side chain. For instance, the anti-tumor effect increased as the number of sugar moieties in a ginsenoside decreased. 4. Pharmacological activities of rare ginsenosides Rare ginsenosides serve as natural ligands for some specific receptors such as bile acid (FXR/TGR5), steroid hormone, estrogen, glucocorticoid, androgen, platelet adenosine diphosphate, which are determined to exert immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes. 5. The impact of rare ginsenosides upon gut microbiota In addition to above-mentioned pharmacological activities, rare ginsenosides are also contributive to maintaining the homeostasis of gut microbiota. Under normal physiological condition, there is a dynamic balance in gut microbiota, which would be disrupted in the onset and development of certain disease. Rare ginenosides can restore the decreased abundance of certain affected microbiota, regulating the intestinal microecology to influence the physiological function of the host. 6. Conclusion By leverage of the stereochemistry properties, rare ginsenosides exhibit superior bioactivity, opening up new opportunities for the discovery and development of drugs and nutraceuticals. Reference Szot JO, Cuny H, Martin EM, et al. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder. J Clin Invest. 2024;134(4):e174824. Published 2024 Feb 15. doi:10.1172/JCI174824 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.