NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NMN supplements are mainly used to increase NAD+ levels to improve metabolic diseases and slow down the aging process.
Improve metabolic diseases: Studies have shown that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity.
Delay the aging process: NMN can increase the vitality of cells, improve the metabolic process of cells, and delay the aging process.
Protect DNA: NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. Supplementing NMN can increase NAD+ levels and protect DNA.
Improves Athletic Capacity: NMN has been shown to improve athletic performance and increase fat burning ability
Improve neurodegenerative diseases: Studies have shown that NMN can improve neurodegenerative diseases, such as Alzheimer's disease
However, these studies were small, and NMN has not been shown to be effective in clinical trials, so further research is needed to determine the effectiveness of NMN supplements.
NMN (Nicotinamide Mononucleotide) is a substance similar to vitamin B3, which can produce NAD+ (a key metabolic intermediate) in the body. Therefore, studies have shown that NMN may help improve aging-related health issues such as metabolism, immunity, cell repair, brain health, and more.
Currently, NMN supplements are mainly used to treat the following diseases:
Aging-related metabolic disorders such as diabetes, obesity, high cholesterol, etc.
Aging-related neurodegenerative diseases, such as Alzheimer's disease.
Aging-associated immune decline.
Aging-related cardiovascular disease.
NMN supplements are mainly used to increase NAD+ levels to improve metabolic diseases and slow down the aging process.
Improve metabolic diseases: Studies have shown that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity.
Delay the aging process: NMN can increase the vitality of cells, improve the metabolic process of cells, and delay the aging process.
Protect DNA: NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. Supplementing NMN can increase NAD+ levels and protect DNA.
Improves Athletic Capacity: NMN has been shown to improve athletic performance and increase fat burning ability
Improve neurodegenerative diseases: Studies have shown that NMN can improve neurodegenerative diseases, such as Alzheimer's disease
NMN supplements may cause side effects such as upset stomach, diarrhea, and nausea. There is also research showing that NMN supplements may affect insulin sensitivity and insulin levels, so people with diabetes should consult their doctor before taking them.
NMN supplements have not yet undergone large-scale clinical trials to verify their effectiveness. Currently, research on NMN supplements is mainly focused on animal and in vitro experiments. These studies show that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity, and can delay the aging process.
The long-term health effects of NMN supplementation are not well studied. Existing studies mainly focus on animal and in vitro experiments, which show that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity, and can delay the aging process. However, the results of these studies do not represent the long-term effects of NMN on human health.
Introduction Ginsenoside Rg3 is Panaxanediol type tetracyclic triterpenoid saponin monomer extracted from the root of Panax ginseng, which has a wide range of pharmacological effects including anti-tumor, neuroprotection, cardiovascular protection, anti-fatigue, anti-oxidation, hypoglycemia, and enhancement of immune function. This research unveils the potential value of ginsenoside Rg3 in targeting breast cancer stem cells (BCSCs) to treat breast cancer, one of the most common tumor worldwide with significant morbidity and mortality. Ginsenoside Rg3 as anticancer adjuvant Ginsenoside Rg3 can promote the apoptosis of tumor cells, and inhibit tumor growth, infiltration, invasion, metastasis and neovascularization. At the same time, it has the effect of reducing toxicity, increasing efficacy in the joint application with chemotherapeutic drugs, improving immunity of the organism, and reversing multi-drug resistance of tumor cells. Shenyi capsule, a new anticancer drug with ginsenoside Rg3 monomer as the main component, was approved by China FDA and marketed in 2003, which is mainly used in the adjuvant treatment of various tumors. About BCSCs Breast cancer stem cells (BCSCs) are a group of undifferentiated cells with strong ability of self-renewal and differentiation, which is the main reason for poor clinical outcomes and poor efficacy. BCSCs can clonally proliferate under serum-free three-dimensional culture conditions and form mammospheres. BCSCs have specific surface markers (CD44, CD24, CD133, OCT4 and SOX2) or enzymes (ALDH1). BCSCs function as potential drivers of breast cancer, which are resistant to conventional breast cancer clinical treatments such as radiotherapy, leading to breast cancer recurrence and metastasis. The suppressive effect of ginsenoside Rg3 in the progression of breast cancer Ginsenoside Rg3 exerts inhibitory effects on the viability and clonogenicity of breast cancer cells in a time- and dose-dependent manner. In addition, it suppresses mammosphere formation, as evidenced by the spheroid number and diameter. Furthermore, ginsenoside Rg3 reduces the expression of stem cell-related factors (c-Myc, Oct4, Sox2, and Lin28), and decreases the ALDH (+) subpopulation breast cancer cells. Ginsenoside Rg3 as an accelerator of MYC mRNA degradation Ginsenoside Rg3 depresses BCSCs mainly through downregulating the expression of MYC, one of the main cancer stem cell reprogramming factors with a pivotal role in tumor initiation. Its regulatory effect on MYC mRNA stability is chiefly achieved by promoting the microRNA let-7 cluster. Under normal conditions, the let7 family is expressed at low levels in cancer cells, resulting in stable MYC mRNA expression and high c-Myc expression. However, Rg3 treatment leads to the upregulation of let-7 cluster, impairment of MYC mRNA stability, downregulation of c-Myc expression and inhibition of breast cancer stem-like properties. Conclusion The traditional Chinese herbal monomer ginsenoside Rg3 has the potential to suppress breast cancer stem-like properties by destabilizing MYC mRNA at the post-transcriptional level, showing great promise as adjuvant for the treatment of breast cancer. Reference Ning JY, Zhang ZH, Zhang J, Liu YM, Li GC, Wang AM, Li Y, Shan X, Wang JH, Zhang X, Zhao Y. Ginsenoside Rg3 decreases breast cancer stem-like phenotypes through impairing MYC mRNA stability. Am J Cancer Res. 2024 Feb 15;14(2):601-615. PMID: 38455405; PMCID: PMC10915333. BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible for any claims, damages, losses, expenses, or costs whatsoever resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction The gut is a diverse and dynamic microbiotic system. There are about 100 trillion microorganisms in the gut, which is mainly composed of anaerobic, partially anaerobic, and aerobic bacteria. In the process of ageing, the intestinal tract may show an increase in the permeability of the epithelial barrier and impaired tight junction proteins. Notably, supplementing β-Nicotinamide mononucleotide (NMN) to elevate NAD+ level has been proved to prolong life and maintain the colon health in ageing Mice. Research protocol Zmpste24−/− mice are frequently used in the construction of the prematurely ageing model, due to their features of slow weight gain, malnutrition and progressive hair loss, with a short median survival of about 20 weeks. Herein, to fathom out the role of NMN in maintaining the colon health of ageing mice, Zmpste24−/− mice aged 5-7 weeks are orally gavaged with phosphate-buffered saline (PBS), or NMN at 100/300 mg kg−1 every other day until natural death. Likewise, natural ageing C57BL/6 mice aged 10 months old are subjected to the oral gavage of PBS or NMN at 300 mg kg−1, serving as the the control. During experiments, the body weight of mice is recorded, and their frailty index and fecal samples are detected. The life span and frailty indices in Zmpste24-/- mice after NMN treatment NMN extends the healthy and median lifespan of Zmpste24−/−improves the Zmpste24−/− ageing phenotype. Specifically, the median lifespan of the mice is increased from 21.4 weeks to 25.7 weeks post NMN intervention, with more than 20% growth. Also, NMN effectively increases body weight. Meanwhile, mice have better overall health after NMN treatment, as manifested by the slowly increasing trend towards Sinclair’s frailty indices. The role of NMN in the intestinal tract of ageing mice NMN adjusts the activity of genes involved in ageing mice colons. Simply put, in the presence of NMN supplement, the protein level of transcriptional regulator P53 is reduced, while the expression levels of ageing marker Sirt1, NMNAT2 and NMNAT3 are elevated. NMN improves the pathology of intestinal epithelial cells and intestinal permeability, as evidenced by the upregulation of intestinal tight junction protein (Claudin1,) and the number of goblet cells, the elevated release of anti-inflammatory factor (IL-10), and the increasing beneficial intestinal bacteria (Akkermansia muciniphila and Bifidobacterium pseudolongum). Conclusion NMN supplementation exerts a protective effect on colon mucosa by controlling the activity of genes involved in ageing, intestinal stem cell differentiation and improving intestinal flora homeostasis, which may be a viable strategy for maintaining healthy ageing in the gut. Reference Yanrou Gu, Lidan Gao, Jiamin He et al. β-Nicotinamide mononucleotide supplementation prolongs the lifespan of prematurely aged mice and protects colon function in ageing mice. Food Funct., 2024 (15): 3199-3213. DOI: 10.1039/D3FO05221D BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Nicotinamide mononucleotide (NMN) supplementation has been suggested to hamper the inflammatory responses via restoring NAD+ level and downregulating the expression of Cyclooxygenase-2 (COX-2). Strikingly, both Aryl hydrocarbon receptor (AhR) and Indoleamine 2,3-Dioxygenase 1 (IDO1), two key enzymes for kynurenine production, can mediate the anti-inflammatory function of NMN in RAW 264.7 macrophages. 2. The alleviated inflammatory response in the presence of NMN supplementation For deciphering the impact of NMN in vivo, mice are subjected to daily intraperitoneal (i.p.) injection of NMN (500 mg/kg) for consecutive 6 days, followed by i.p. injection of lipopolysaccharides (LPS) (5 mg/kg) or alum (700 μg) on day 7. It is discovered that NMN supplementation suppresses LPS- or alum-induced inflammation in mice, as manifested by the downregulation of proinflammatory cytokines (IL-6 and IL-1β) and proinflammatory enzyme (COX-2). 3. The necessity of AhR for NMN-mediated inhibition of inflammatory response in macrophages AhR, a ligand-activated transcription factor, can mediate the anti-inflammatory function of NMN upon LPS treatment in RAW264.7 cells. Specifically, NMN reduces the expression of COX-2 in cells in bearing AHR. On the contrary. AhR inhibitor (CH223191) deprives the downregulation of IL-6, IL-1β and COX-2 caused by NMN treatment. Likewise, NMN treatment fails to reduce the expression levels of IL-6, IL-1β, and COX-2 in AhR knockout cells. 4. The importance of IDO1/kynurenine/AhR axis in the anti-inflammation function of NMN IDO1 is the rate-limiting enzyme in tryptophan catabolism to produce kynurenine, a metabolic intermediate in NAD+ de novo synthesis pathway. Kynurenine can promote the translocation of AhR from the cytoplasm to nucleus, thereby exerting an anti-inflammatory effect. NMN inhibits LPS-induced inflammation in a IDO1-kynurenine dependent manner in macrophages. 5. Conclusion NMN supplementation mitigates COX-2-associated inflammatory responses by activating lDO-kynurenine-AhR pathway, providing new insights into NAD* regulation in macrophage activation. Reference Liu J, Hou W, Zong Z, et al. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med. Published online February 8, 2024. doi:10.1016/j.freeradbiomed.2024.01.046 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.