A brief introduction to the characteristics of nmn powder | Bontac

A brief introduction to the characteristics of nmn powder | Bontac

NMN is also present in the human body and is a source material. The production of NMN powder by whole enzymatic technology means that the biological enzymes are used as catalysts in the production process by simulating the internal physiological environment of the human body to the greatest extent possible. The NMN powder produced in this way is not only of high purity, but also has an abundant production capacity due to the high utilization of raw materials.
Get A Quote

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

about us

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Learn More

NMN powder manufacturing method

NMN powder in general is typically produced via chemical or enzymatic synthesis, or fermentation biosynthesis. There are pros and cons to all three methods.
Chemical synthesis is expensive and labor intensive, and all raw ingredients used are categorized as “unnatural,” i.e., not from biological systems. There are, however, some advantages from the manufacturer’s perspective. The yield is well suited to mass NMN powder production, and all of those unnatural raw ingredients can be carefully controlled. But there are a number of drawbacks as well. Some of the solvents used in the manufacturing process are seriously bad from an environmental standpoint, and impurities and by-products can be challenging to remove from the finished product – that’s seriously bad for the consumer.
Enzymatic production of NMN powder, on the other hand, is considered a “green preparation method.” Like the chemical route, it’s pricey, but it offers a higher yield and impressively high purity. The finished NMN ticks all the boxes – stable, easily absorbed, lightweight, low density, and a low molecular structure.
Fermentation has also been explored as a method of producing NMN, but yield, though high quality, is pretty abysmal, so many supplement companies quite sensibly look to other, more efficacious processes.

NMN powder manufacturing method

BONTAC NMN product features and advantages

1、“Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder 
2、Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability of production of NMN powder 
3、Industrial leading technology: 15 domestic and international NMN patents
4、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMN powder  
5、Multiple in vivo studies show that Bontac NMN powder is safe and effective
6、Provide one-stop product solution customization service
7、NMN raw material supplier of famous David Sinclair team of Harvard University.

BONTAC NMN product features and advantages

NMN powder efficacy in health

NMN was only considered as a source of cellular energy and an intermediate in NAD+ biosynthesis, currently, the attention of the scientific community has been paid on anti-aging activity and a variety of health benefits and pharmacological activities of NMN which are related to the restoring of NAD+. Thus, NMN has therapeutic effects towards a range of diseases, including age-induced type 2 diabetes, obesity, cerebral and cardiac ischemia, heart failure and cardiomyopathies, Alzheimer’s disease and other neurodegenerative disorders, corneal injury, macular degeneration and retinal degeneration, acute kidney injury and alcoholic liver disease.

NMN powder efficacy in health
User Reviews

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs
Frequently Asked Question

Do you have any question?

Aging, as a natural process is identified by downregulation of energy production in mitochondria of various organs such as brain, adipose tissue, skin, liver, skeletal muscle and pancreas due to the depletion of NAD+ . NAD+ levels in the body decrease as a consequence of increasing NAD+ consuming enzymes when aging There are three different biosynthesis pathways to produce NAD+ in mammalian cells including de novo synthesis from tryptophan, salt and Preiss-Handler pathways. Among these three pathways, NMN is an interproduct by is involved in NAD+ biosynthesis through salt and Preiss-Handler pathways. The salvage pathway is the most efficient and the main route for the NAD+ biosynthesis, in which nicotinamide and 5-phosphoribosyl-1-pyrophosphate are converted to NMN with the enzyme of NAMPT followed by conjugation to ATP and conversion to NAD by NMNAT. Furthermore, NAD+ consuming enzymes are responsible for degradation of NAD+ and consequence nt formation of nicotinamide as a by-product.

The safety of NMN powder cannot be assessed since required clinical and toxicological studies have not been completed yet to establish the recommended safe levels for long term administration. Nevertheless, their safety and efficacy are uncertain and unreliable since most of them have not been back by Rigorous scientific preclinical and clinical testing. This issue has been arisen as manufacturers are hesitant to pay for research and clinical trials due to potential lower profit margin, and there is no authorizing agency to regulate NMN products because it is often product sold as functional food than heavily regulated therapeutic drug. Therefore, more strict approval process has been demanded by consumer advocacy groups requesting regulatory agencies to set standard and restrictions for marketing anti-aging health products, considering safety, health and wellbeing of N red besumers. a panacea for the elderly, because boosting NAD levels when not required may yield some detrimental effects. Therefore, the dose and frequency of NMN supplementation should be carefully prescribed depending on the type of age-related deficiency and all other confronting health conditions of the people. Other NAD precursors over have been studied to diverse age-related deficiencies and they are used for particular deficiencies, only after they are proven for effectiveness and safe to use. Therefore, the same principle should be applied to NMN as well

First, inspect the factory. After some screening, NMN companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMN powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMN powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound ca n be preliminarily determined.

Our updates and blog posts

An Integrated Map of Molecular Mechanisms Underlying the Effect of NMN in T2DM

Introduction Diabetes is one of the dominant causes of death and disability worldwide, greatly affecting the life quality of patients. According to the latest data on diabetes released by the Lancet (GBD Study 2021), type 2 diabetes mellitus (T2DM) cases almost makes up 96.0% of all diabetes cases, with the hallmark of impaired glucose uptake. There are approximately 529 million patients with diabetes in 2021, with age-standardized prevalence of 6.1%. Remarkably, β-nicotinamide mononucleotide (NMN) is able to ameliorate T2DM via unexpected effects on adipose tissue rather than mitochondrial biogenesis. Global age-standardised prevalence of type 1 and type 2 diabetes from 1990 through 2050 forecasts Risk factors for T2DM High body mass index (BMI) is the main risk factor for T2DM, followed by dietary risk factors, environmental or occupational factors, smoking, insufficient physical activity, alcohol consumption, etc. The organ-specific effects of NMN treatment in T2DM NMN alleviates the mildly impaired and energy-inefficient protein synthesis in mice with T2DM induced by high-fat food. Specifically, NMN downregulates spliceosome proteins while upregulating ribosome proteins in hepatocytes. Besides, NMN downregulates proteasome and upregulates DNA replication and cell cycle pathways in muscle cells. Integrated proteomics data analysis of NMN-treated HFD mouse liver. Integrated proteomics data analysis of mouse muscle tissue. Adipose tissue, an energy reservoir, has been attested to be implicated with glucose metabolism. NMN boosts glucose uptake via Resistin downregulation, increased protein synthesis/degradation, fatty acid degradation, lysosome protein upregulation (most notably upregulation of the ATP6V1 proton pump), mTOR cell proliferation signaling in white adipose tissue, differentiation of preadipocytes to brown adipose cells and/or overexpression of thermogenic UCP1, a protein of the inner mitochondrial membrane of brown adipose tissue. Integrated proteomics data analysis of NMN-treated HFD mouse adipose tissue Conclusion NMN exerts organ-specific effects, with a vital role in improving glucose uptake, showing potent potential in the management of metabolic disorders including T2DM. Reference [1] GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203-234. doi:10.1016/S0140-6736(23)01301-6 [2] Popescu RG, Dinischiotu A, Soare T, Vlase E, Marinescu GC. Nicotinamide Mononucleotide (NMN) Works in Type 2 Diabetes through Unexpected Effects in Adipose Tissue, Not by Mitochondrial Biogenesis. Int J Mol Sci. 2024;25(5):2594. Published 2024 Feb 23. doi:10.3390/ijms25052594 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

Frontier Dynamics on the Molecular Mechanism of Ginsenoside Rh2 Against Tumor

Introduction Ginsenoside Rh2, one protopanaxadiol (PPD)-type rare ginsenoside in Panax ginseng, is uncovered to possibly have broad-spectrum pharmacological activity in diversified tumors. It is utilized as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer, which has been a research hotspot in recent years. Current states on cancer therapies Cancer has emerged as the second largest cause for death across the world, with approximately 9.6 million cancer-related deaths in 2018, in accordance with the statistical report by World Health Organization (WHO). Radiotherapy, chemotherapy and surgery are the preferred option for cancer, whose efficacy is however limited by the tumor relapse and drug resistance, requiring a patch such as adjuvant drugs to fix the bug. For anticancer treatment, over 60% of the approved and pre-new drug application candidates are natural products or synthetic molecules based upon natural product molecular skeletons. Strikingly, ginsenosides act as a promising therapeutic target by virtue of its pharmacological activities such as immune adjustment, anti-tumor, anti-oxidation, and protection of the heart and cerebral vessels. 20(S) ginsenoside Rh2 vs. 20(R) ginsenoside Rh2 There are two stereoisomeric forms of ginsenoside Rh2, namely 20(S) ginsenoside Rh2 and 20(R) ginsenoside Rh2. Relative to the (20R) ginsenoside Rh2, (20S) ginsenoside Rh2 has higher cytotoxic activity towards cancer cells. In a previously reported study, the half maximal inhibitory concentration values of 20(S) ginsenoside Rh2 and 20(R) ginsenoside Rh2 in A549 cells are 45.7 and 53.6 µM, respectively. The underlying mechanisms of ginsenoside Rh2 against tumor Mechanically, the anti-tumor effects of ginsenoside Rh2 are realized by enhancing the body’s immune activity to regulate microenvironment, inhibiting differentiation, angiogenesis, proliferation, invasion, and metastasis of tumor cells, inducing the apoptosis, cell cycle arrest, autophagy, superoxide and reactive oxygen species, and reversing the drug resistance via regulating a series of important tumor-related signaling pathway. For instance, ginsenoside Rh2 can activate CD4+ and CD8a+ T lymphocytes, promote their invasion, and enhance the killing effect of lymphocytes on B16-F10 melanoma cells in a concentration-dependent manner. Besides, the number of tumor cells in the G0/G1 phase is increased significantly post treatment with ginsenoside Rh2 and 5-FU, by which the expansion and migration of tumor cells are effectively hampered. Additionally, the ginsenoside Rh2 downregulates the levels of drug-resistance-related genes (eg. MRP1, MDR1, LRP and GST), making colorectal cancer cells more sensitive to 5-FU. Conclusion Ginsenoside Rh2 plays multifunctional roles in both tumor treatment and tumor microenvironment immunomodulation, which may become a promising choice of medication for patients with tumors in the future. Reference [1] Xiaodan S, Ying C. Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother. 2022;156:113912. doi:10.1016/j.biopha.2022.113912 [2] Yang L, Chen JJ, Sheng-Xian Teo B, Zhang J, Jiang M. Research Progress on the Antitumor Molecular Mechanism of Ginsenoside Rh2. Am J Chin Med. Published online January 31, 2024. doi:10.1142/S0192415X24500095 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. BONTAC holds no responsibility for any claims, damages, losses, expenses, costs or liabilities resulting or arising directly or indirectly from your reliance on the information and material on this website.

Mitigation of TOCP-induced Oocyte Damage by Replenishing NMN

Introduction Triocresyl phosphate (TOCP) is widely used in the realm of industry and agriculture in the last century. However, it is subsequently banned due to the increasing understanding of its toxicity. In the 21st century, TOCP comes back into the limelight as the aviation industry springs up. This research uncovers the adverse effects of TOCP on the reproductive system. Notably, nicotinamide mononucleotide (NMN), a crucial intermediate in the generation of NAD+, may serve as a therapeutic intervention to attenuate the oocyte damage caused by TOCP. About TOCP TOCP, a classic aromatic organophosphate ester, generally functions as flame retardant, plasticizer, lubricant, and jet fuel additive due to its chemical and thermal stability. At room temperature, TOCP is an odorless, yellowish transparent liquid. It is insoluble in water, but soluble in organic solvents such as alcohol, ether and benzene. In addition to its use in aviation industry, TOCP is currently applied in the manufacturing of construction materials such as plastics, furniture, textiles, printed circuit boards, and insulation. The negative roles of TOCP in oocytes Through the analyses of germinal vesicle breakdown (GVBD) and polar body extrusion (PBE), it is discovered that TOCP impedes the maturation process of oocyte meiotic division, suppressing the reinitiation of oocytes and the final extrusion of the first polar body. Remarkably, maturation of oocytes is deemed as a critical prerequisite for successful fertilization and subsequent embryonic development. Besides, it triggers disturbances in the cytoskeleton of oocytes and affects the distribution and functionality of mitochondria. Furthermore, exposure to TOCP alters the genes related to histone modification in oocytes, as manifested by the elevated levels of histone methylation at H3K9me3 and H3K27me3. The reversing effects of NMN on TOCP in oocytes Replenishing NMN partially restores the spindle/chromosome structure as well as the attachment of microtubules to centromeres, and stabilizes the distribution of actin filaments, thereby maintaining chromosomal integrity and supporting the nuclear maturation process of oocytes. Meanwhile, NMN is also effective in rescuing mitochondrial dysfunction induced by TOCP, which restores membrane potential and ATP levels, reduces excessive ROS production, prevents DNA damage, and hinders cell apoptosis as well as epigenetic alterations. Conclusion Nicotinamide mononucleotide maintains cytoskeletal stability and fortifies mitochondrial function to mitigate oocyte damage induced by TOCP, signifying its potential application value in refining reproductive therapeutic strategies. Reference Meng F, Zhang Y, Du J, et al. Nicotinamide mononucleotide maintains cytoskeletal stability and fortifies mitochondrial function to mitigate oocyte damage induced by Triocresyl phosphate. Ecotoxicol Environ Saf. 2024;275:116264. doi:10.1016/j.ecoenv.2024.116264 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

Get In Touch

Don't hesitate to contact with us

Sending your message. Please wait...