NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
1、As an advanced technology NAD manufacturer, BONTAC choose the Enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、High purity(up to 99%) and stability of production of NAD powder
3、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NAD powder
4、Multiple in vivo studies show that Bontac NAD powder is safe and effective
5、Provide one-stop product solution customization service
The preparation methods utilized by manufacturers worldwide of NAD powder are mainly divided into chemical synthesis method and biocatalytic method, among which biocatalytic method includes biological fermentation method and enzyme catalysis method. Enzyme catalysis method has gradually become the mainstream direction because of its advantages of green, environmental protection and pollution-free. And then the purity of NAD powder will reach 99% after the procedure of further purifying. But some NAD manufacturers tend to choose the multiple methods to develop the producing of NAD.
Molecules that can be taken in supplement form to increase NAD levels in the body are referred to by some as “NAD boosters.” Studies conducted over the past six decades suggest that the following are some of the many benefits associated with taking an NAD supplement:
Can Help Restore Mitochondrial Function
Helps Repair Blood Vessels —A 2018 mice study found that supplementation could aid in repair and growth of aged blood vessels. There’s also some evidence it can help manage heart disease risk factors like high blood pressure and high cholesterol.
May Improve Muscle Function — One animal study conducted in 2016 found that degenerative muscles had improved muscle function when supplemented with NAD+ precursors.
Potentially Helps Repair Cells and Damaged DNA — Some studies have found evidence that NAD+ precursor supplementation leads to an increase in DNA damage repair. NAD+ is broken down into two component parts, nicotinamide and ADP-ribose, which combine with proteins to repair cells.
May Help Improve Cognitive Function — Several studies conducted on mice have found that mice treated with NAD+ precursors experienced improvements in cognitive function, learning and memory. Findings have led researchers to believe that NAD supplement may help protect against cognitive decline/Alzheimer’s disease.
May Help Prevent Age-Related Weight Gain — A 2012 study showed that when mice fed a high-fat diet were given an NAD supplement, they gained 60 percent less weight than they did on the same diets without the supplement. One reason this may be true is that nicotinamide adenine dinucleotide helps regulate production of stress- and appetite-related hormones, thanks to its effects on circadian rhythms.
Precursors are molecules used in chemical reactions inside the body to create other compounds. There are a number of precursors of NAD+ that result in higher levels when you consume enough of them.
1.Prevention and treatment of viral-induced inflammatory storms
Scientists have found after extensive research that neo-coronavirus has a mechanism similar to SARS virus to activate inflammatory vesicles NLRP3. and the activation of NLRP3 produces more inflammatory factors, generating excessive inflammation and thus triggering a deadly cytokine storm. This problem can be well addressed by NAD+, which inhibits the activity of NF-κB inflammatory pathway and NLRP3 inflammasome by increasing the activity of sirtuins (SIRT1, SIRT2 and SIRT3), thus preventing cytokine storm caused by excessive inflammation. Therefore, Sinclair and other scientists believe that increasing the concentration of NAD+ may play an important role in the prevention and treatment of neocoronavirus and other viral infections.
2.Restoration of virus-induced metabolic disorders
NAD+ is an essential coenzyme for many cellular energy metabolic pathways, present in every cell of the body, involved in thousands of reactions, and an important player in maintaining cellular viability. In the COVID-19 infection model, NAD+ and NMN supplementation was found to be effective in alleviating cell death and protecting the lung.
First, inspect the factory. After some screening, NAD manufactures that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NAD powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NAD powder. If high purity NAD cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NAD powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
In the international market, NAD+ food supplements are in production in the United States, the Australian Food and Drug Administration has approved NAD+ products for sale, and Japanese NAD+ manufactures are devoted to extend the market share in China. Li Ka-shing invested HK$200 million in the US NAD manufacturer, whose NAD+ products are being sold by Watsons in Hong Kong! Then Mclane, a company owned by Warren Buffett also joined the NAD market.
Introduction Solute carrier family 25 member 51 (SLC25A51) is perceived as a mammalian transporter, which is capable of importing oxidized nicotinamide adenine dinucleotide (NAD+) into mitochondrial matrix. Remarkably, upregulation of SLC25A51 has correlation with poorer outcomes in patients with acute myeloid leukemia (AML), a clinically aggressive haematological disease with a mortality rate of over 70% within the first 5 years following an initial diagnosis. The association between NAD+/NADH ratio and SLC25A51 in AML cells Both NAD+ (oxidative form) and NADH (reduced form) are essential coenzymes for cellular energy metabolism, and the ratio of NAD+/NADH reflects the metabolic activity and health state, which has a direct impact on cellular rhythms, senescence, carcinogenesis and death. Importing mitochondrial NAD+ by SLC25A51 could be a critical aspect supporting mitochondrial metabolism in AML tumorigenesis. Concretely, the decreased mitochondrial NAD+/NADH ratio and specific loss of reduced ubiquinol are observed post the depletion of SLC25A51 in AML cells U937. SLC25A51 as an NAD+/NADH redox decoupler in AML SLC25A51 functions as an NAD+/NADH redox decoupler in AML tumorigenesis to sustain an oxidative TCA cycle and promote glutaminolysis. Depletion of SLC25A51 results in increased usage of non-glutamine carbon sources to support the TCA cycle, as determined by increased proportions of unlabeled TCA intermediates. SLC25A51 is required for robust glutaminolysis. In the context of SLC25A51 depletion, AML cells are forced to rely more on glutamine for aspartate synthesis. Alleviation of AML by SLC25A51 depletion and 5-azacytidine Loss of SLC25A51 leads to a subcellular redistribution of NAD+ in AML cells to limit proliferation. The combination of SLC25A51 depletion and 5-azacytidine is much effective in repressing the viability of AML cells and prolonging the survival time of mice. Conclusion SLC25A51 can maintain mitochondrial oxidative phosphorylation and boost the proliferation of AML cells by regulating NAD+/NADH ratio in mitochondria, with promising efficacy in treating AML, especially in combination with 5-azacytidine. BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Dengue fever is an acute infectious disease caused by the Dengue virus through the bite of an infected Aedes species (Ae. aegypti or Ae. albopictus) mosquito, with the main symptoms such as high fever, dizziness, headache, rash and severe pains (eye, muscle, joint, or bone pain), etc. This disease is widely prevalent in tropical and subtropical climates. An estimated 100 to 400 million people are infected each year, where over 80% are usually mild and asymptomatic. Nonetheless, severe Dengue fever can increase the risk of death if not treated properly. Thus, early diagnosis of this disease is significant to its timely treatment. Noteworthily, non-structural protein 1 (NS1), a highly conserved glycoprotein, is chiefly secreted during the infection of Dengue virus, which is intensively deemed as the main pathogenesis factor of Dengue fever. Hence, NSI is generally used as a biomarker for the early detection of this disease. In this study, a sandwich enzyme-linked immunosorbent assay (ELISA) in combination with the thio nicotinamide adenine dinucleotide (thio-NAD/S-NAD) cycling method (hereafter termed ultrasensitive ELISA) is utilized to detect NSI, followed by the comparison with NAAT to confirm its detection accuracy. 2. Advantages and disadvantages of traditional detection methods for Dengue fever At present, there are four main detection methods for Dengue fever. Viral isolation and identification have high specificity but are time-consuming, taking at least 5 days. The rapid antigen test is the fastest and most cost-efficient among the other methods, but the sensitivity and specificity are relatively low. Serologic test based on IgM and IgG is limited by the number of days of infection, as the test must be delayed until the level of antibodies rises to a detectable level. In clinic, NAAT is often applied to determine Dengue fever by dirt of its high sensitivity and specificity. However, this method is expensive, laborious, and prone to false positivity, which must be conducted by the trained personnel. To overcome the disadvantages of these methods, a new detection method ultrasensitive ELISA is applied in this study. 3. Workflow of ultrasensitive ELISA with thio-NAD cycling A pair of antibodies is used for capturing the NS1 protein in the sandwich ELISA, and alkaline phosphatase is labeled on the secondary antibody. Aside from the antibodies, an androsterone derivative, 3α-hydroxysteroid dehydrogenase, thio-NAD, and NADH are used to construct the thio-NAD enzyme cycling system. During the thio-NAD cycling reaction, thio-NADH constantly accumulated in a triangular number fashion and could be directly measured at an absorbance of 405 nm. 4. The comparison of ultrasensitive ELISA and NAAT in the detection of Dengue NS1 Protein In NAAT, 60 specimens are dengue-positive, and 25 are dengue-negative. The NAAT cycling threshold (CT) value of those dengue-positive specimens ranged from 12.42 to 31.41. In the ultrasensitive ELISA, 59 specimens are correspondingly positive to the NAAT results, whereas 25 specimens are completely correspondingly negative to the NAAT results. Compared with NAAT, the sensitivity and specificity of the ultrasensitive ELISA are 98.3% and 100%, respectively (Table 2). Of 60 NAAT-confirmed dengue-positive patient specimens, only 1 specimen is negative in the ultrasensitive ELISA. The NAAT data showed that the specimen is a type 4 DENV infection case with a CT value of 21.59. The results of the ultrasensitive ELISA are in almost perfect agreement with the NAAT results, with a kappa value of 0.972 (95% CI: 0.917-1.0). 5. Conclusion Ultrasensitive ELISA method is easy to perform and requires no professional trainees to operate. The detection can be started immediately after receiving a small sample. It is particularly suitable for the early detection of Dengue disease in low-income countries. Reference Chen, Po-Kai et al. “Advanced Detection Method for Dengue NS1 Protein Using Ultrasensitive ELISA with Thio-NAD Cycling.” Viruses vol. 15,9 1894. 8 Sep. 2023, doi:10.3390/v15091894 Product advantages and features of BONTAC Thio-NAD/S-NAD BONTAC is one of the few enterprises in China that can produce Thio-NAD, with “Bonzyme” Whole-enzymatic method (environmental-friendly; no harmful solvent residues) and unique “Bonpure” seven-step purification technology. BONTAC intergrates R&D, production and sale, with self-owned factories and a number of international certifications to ensure high quality and stable supply of products. Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Ginseng has always been highly perceived as a valuable traditional Chinese medicine in China. Currently, much attention also has been paid to ginsenosides, the main active ingredients extracted from ginseng. Strikingly, ginsenoside Rh2, one of the most representative bioactive ginsenosides in Panax ginseng, has immunomodulatory, anti-inflammatory, and anti-tumor activities, showing a therapeutic role in numerous diseases. 2. The therapeutic effect of ginsenoside Rh2 * Enhance the immune function of the human body Ginsenoside Rh2 has the effect of enhancing the immune function of the patient's body. Notewothily, it can effectively reduce the toxicity left by chemotherapy in the human body by improving immunity. *Ameliorate neuropathic pain Intrathecal administration of ginsenoside Rh2 significantly attenuates SNI-induced mechanical allodynia and thermal hyperalgesia. The antinociceptive effect of Rh2 continued until 10 days after SNI surgeryn, showing a potential application value in pain therapy. Figure 1 Intrathecal injection of Rh2 inhibits neuropathic pain in mice * Suppress the inflammation Previous studies have revealed that ginsenoside Rh2 can inhibit spared nerve injury (SNI)-induced increase of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1 and interleukin-6), and significantly inhibit lipopolysaccharide (LPS)-induced activation of BV2 cells. Figure 2 Intrathecal injection of Rh2 reduced expression of proinflammatory cytokines IL-1, IL-6 and TNF-α in SNI mice * Promote the synthesis of albumin Ginsenoside Rh2 acts as an immune regulator to promote the synthesis of albumin, which can provide heat for the human body, protect and stabilize the immunoglobulin in the blood. * Inhibit the growth of tumor cells Ginsenoside Rh2 exhibits a chemical structure similar to that of dexamethasone. In in vitro studies, it can suppress the growth and viability of various cancer cells, induce tumor cell cycle arrest and cellular apoptosis, trigger necrosis and autophagy in cancer cells, inhibit metastasis, and suppress angiogenesis. * Reversal of abnormal tumor differentiation Ginsenoside Rh2 has a differentiation-inducing effect on tumor cancer cells, and can effectively enhance the melanin production ability in cancer cells, thereby causing cancer cells to transform into normal cells in morphology. Table 1 Anticancer effects and mechanisms of ginsenoside‑Rh2 in in vivo studies 3. The difference between ginsenoside Rg3 and ginsenoside Rh2 Figure 3 Molecular struction of ginsenoside Rg3 and ginsenoside Rh2 Both ginsenoside Rg3 and ginsenoside Rh2 have been attested to achieve antitumor effects by strengthening the immune function of the body. Despite their similar mechanisms of action, differences still exist between ginsenoside Rg3 and ginsenoside Rh2. In terms of the molecular structure, ginsenoside Rh2 has only one glycosyl group, whereas ginsenoside Rg3 has two. In addition, ginsenoside Rh2 has a higher bioavailability than ginsenoside Rg3. Ginsenoside Rg3 is easy to be excreted from the body after being taken, and won't make much difference to the body. With regard to the intestinal absorption, ginsenotone Rh2 is about 5 times of ginsenotone Rg3. 4. Conclusion The monosaccharide ginsenoside Rh2 can effectively improve human immunity, enhance disease resistance, and reduce the risk of cancer. Relative to ginsenoside Rg3, ginsenoside Rh2 shows higher cost-efficiency in the intestinal absorption, application scope and efficacy, providing an upgraded health support. Product Features and advantages of BONTAC Ginsenoside Rh2 One-stop product solution customization service Multiple patents and strict third-party self-inspection The first national mass production of ginsenosides by enzymatic synthesis Unique Bonzyme enzymatic synthesis technology Reference [1] Fu, Yuan-Yuan et al. Ginsenoside Rh2 Ameliorates Neuropathic Pain by inhibition of the miRNA21-TLR8-mitogen-activated protein kinase axis. Molecular pain. 2022;18:17448069221126078. doi:10.1177/17448069221126078 [2] He XL, Xu XH, Shi JJ, et al. Anticancer Effects of Ginsenoside Rh2: A Systematic Review. Curr Mol Pharmacol. 2022;15(1):179-189. doi:10.2174/1874467214666210309115105 Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.