NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
What kind of coenzyme is nad+, the function and efficacy of NAD+, aging is almost human instinct. Aging brings more than just physical changes, it's a key factor in heart disease, cancer, diabetes, Alzheimer's and many other chronic diseases. Author: bili_56710380827 https://www.bilibili.com/read/cv16932994 Source: bilibili
Introduction Oxidized form of nicotinamide adenine dinucleotide (NAD+) and its precursor nicotinamide mononucleotide (NMN) have been uncovered to restore DNA repair and prevent cancer progression via the deleted in breast cancer 1 (DBC1). This research is committed to deciphering the detailed molecular mechanisms. About DBC1 DBC1 is a nuclear protein initially cloned from a human chromosome 8p21 region, which can modulate diversified targets by protein-protein interaction, contributing to various cellular processes such as apoptosis, DNA repair, senescence, transcription, metabolism, circadian cycle, epigenetic regulation, cell proliferation, and tumorigenesis. The affinity and molecular binding mechanisms between NAD+/NMN and DBC1354–396 Under the help of nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments, it is verified that both NAD+ and NMN have a binding relationship with the NHD domain of DBC1. Specifically, NAD+ interacts with DBC1354-396 through hydrogen bonds, with a binding affinity (8.99 μM) nearly twice that of NMN (17.0 μM) and the key binding sites are primarily residues E363 and D372. The vital roles of E363 and D372 mutagenesis in ligand-protein interaction The N-terminal loop of DBC1354-396 encloses the small ligand within a local space, anchoring NAD+ and NMN to the protein through key amino acid residues E363 and D372 via hydrogen bonding. Conclusion Both NAD+ and its precursor NMN can bind to DBC1's NHD domain (DBC1354–396) at key sites E363 and D372, providing novel clues for the development of targeted therapies and drug research on DBC1-associated disease including tumors. Reference Ou L, Zhao X, Wu IJ, et al. Molecular mechanism of NAD+ and NMN binding to the Nudix homology domains of DBC1. Int J Biol Macromol. Published online February 12, 2024. doi:10.1016/j.ijbiomac.2024.130131 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Diabetic peripheral neuropathy (DPN) is one of the most frequent complications of diabetes, ans also a major cause of foot ulcers, disability, and eventual amputation. With the prolongation of the diabetes, about 50% of people with diabetes will eventually develop DPN. Notably, supplementing NAD+ precursors could alleviate DPN symptoms by increasing the NAD+ level and activating the sirtuin-1 (SIRT1) protein. 2. The reversal effect of NAD+ precursors on DPN In vitro, the Dorsal Root Ganglion neurons (DRGs) isolated from diabetic mice are exposed to the NAD+ precursor Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN). It is found that the NAD+ level, the SIRT1 protein, and the deacetylation activity are elevated, followed by the boosted neurite growth, the improved nerve function, and the reversal of IENFD loss. In vivo, supplement of NMN or NR also offsets the neuropathy in C57BL6 mice induced by streptozotocin (STZ) or high fat diet (HFD), as manifested by the improved sensory function, normalized nerve conduction velocities, and restored intraepidermal nerve fibers. 3. The increase of neurite length in a SIRT1-dependent manner post the addition of NMN/NR SIRT1, one of the most unique NAD+ consuming enzymes, can protect against DPN when activated, which may attribute to the improved mitochondrial function and energy homeostasis. Apart from these, SIRT1 activity in the nucleus can deacetylate the transcriptional and co-transcriptional factors that regulate glucose homeostasis and fat oxidation. The activation of SIRT1 is critical for axonal regeneration. NMN/NR treatment or transfection with SIRT1 overexpression vector can directly facilitate the neurite growth in cultured DRG neurons, which however is hindered by the SIRT1 inhibitor EX527, hinting the significance of SIRT1. 4. The association of SARM1 with NMNAT2 in axonal degeneration of DPN Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) controls the axonal degeneration and regeneration via a well-regulated system comprising NAD+ and NMN. NAD and NMNAT2 can boost vesicular glycolysis and axonal transport to maintain the axonal health. The mitochondrial localization of SARM1 complements the coordinated activity of NMNAT2 that promotes axonal survival. 5. Conclusion Supplementing NAD+ precursors may be a promising approach for the treatment of DPN. A SARM1 inhibitor coupled with either NR or NMN may be more effective than a single agent alone in preventing or treating DPN. Reference Chandrasekaran K, Najimi N, Sagi AR, et al. NAD+ Precursors Reverse Experimental Diabetic Neuropathy in Mice. Int J Mol Sci. 2024;25(2):1102. Published 2024 Jan 16. doi:10.3390/ijms25021102 BONTAC NMN and NR BONTAC has dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 160 global patents as well as strong R&D team consisting of Doctors and Masters. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. Both the precursors NMN and NR are available in BONTAC. The high purity and stability of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Heart failure is a serious condition in the development of cardiovascular disease. In particular, diastolic heart failure, as one of the most common manifestations of heart failure in the elderly, has always been viewed as a classic aging-related terminal illness due to its high prevalence and lack of effective treatment. Nicotinamide mononucleotide (NMN) raises the hope for the treatment of this illness. NMN can restore the functions of heart and blood vessels, protect the heart from damage after a heart attack, prevent heart failure by promoting the health of the mitochondria, and restore cardiovascular, cognitive, and metabolic decline. This study is dedicated to deciphering another mechanism of action for NMN administration, namely improving lysosomal ferroptosis to prevent heart failure. 2. The key pathogenesis of diastolic heart failure The effect of NMN on improving cardiac function is mainly realized by elevating the level of myocardial nicotinamide adenine dinucleotide (NAD+), an important coenzyme in the tricarboxylic acid cycle. The mitochondrial dysfunction and decreased ability of NAD+ biosynthesis are the key pathogenesis of diastolic heart failure. 3. Restoration of lysosomal function and autophagic function by NMN administration Lysosomal function is impaired owing to decreased NAD+ biosynthesis in vivo. NMN administration improves lysosomal function and activates amino acid metabolism in the mice with cardiomyocyte-specific knockout of p32 (p32cKO), yet barely affects the lysosomal morphology. Additionally, NMN administration improves the degradation mechanism of autophagy, as evidenced by the restoration of autophagic function post NMN administration. 4. The detailed mechanism of action for NMN administration on heart failure NMN administration does not restore functional mitochondrial damage caused by the inhibition of mitochondrial translation. These findings suggest that NMN administration improves heart failure by improving lysosomal function without improving mitochondrial function. 5. The involvement of ferroptosis in heart-specific mitochondrial translation defect The suppression of ferroptosis ameliorates heart failure. The expression levels of ferroptosis-related factors (Chac1, GPX4, and Ho1) are also diminished by NMN, indicating that ferroptosis in the p32cKO heart is improved by NMN administration. 6. The improvement of mitochondrial dysfunction-induced ferroptosis by NMN administration The ferroptosis is induced in the p32 knockdown cells, as attested by the mitochondrial translation defect and the downregulation of intracellular NAD+ and NADH levels. The induction of ferroptosis in lysosome is closely related to the amount of NAD+ biosynthesis. When intracellular NAD+ level is lowered, the intracellular iron deposition and lipid peroxide are induced, which however are ameliorated by NMN administration. 7. Conclusion Mechanically, NMN administration can prevent heart failure by improving lysosomal ferroptosis, opening up new insight for the treatment of this illness. Reference Yagi, Mikako et al. “Improving lysosomal ferroptosis with NMN administration protects against heart failure.” Life science alliance vol. 6,12 e202302116. 4 Oct. 2023, doi:10.26508/lsa.202302116 BONTAC NMN product features and advantages * “Bonzyme” Whole-enzymatic method (environmental-friendly; no harmful solvent residues) * Exclusive “Bonpure” seven-step purification technology, with high purity (up to 99.9%) and stability * Industrial leading technology: 15 domestic and international NMN patents * Self-owned factories and a number of international certifications to ensure high quality and stable supply of products * One-stop customized service for product solution * NMN raw material supplier of famous David Sinclair team of Harvard University Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.