nad manufacturer | What is NAD

nad manufacturer | What is NAD

NAD refers to  Nicotinamide adenine dinucleotide, found in all living cells, NAD with the CAS NO. of 53-84-9 and the chemical  formula of C21H27N7O14P2 is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other nicotinamide NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.
In metabolism, nicotinamide adenine dinucleotide is involved in redox reactions, carrying electrons from one reaction to another. The cofactor is, therefore, found in two forms in cells: NAD+ is an oxidizing agent – it accepts electrons from other molecules and becomes reduced. This reaction, also with H+, forms NADH, which can then be used as a reducing agent to donate electrons. These electron transfer reactions are the main function of NAD. However, it is also used in other cellular processes, most notably as a substrate of enzymes in adding or removing chemical groups to or from, respectively, proteins, in posttranslational modifications. Because of the importance of these functions, the enzymes involved in NAD metabolism are targets for drug discovery.
In organisms, NAD can be synthesized from simple building-blocks (de novo) from either tryptophan or aspartic acid, each a case of an amino acid; alternatively, more complex components of the coenzymes are taken up from nutritive compounds such as niacin; similar compounds are produced by reactions that break down the structure of NAD, providing a salvage pathway that “recycles” them back into their respective active form.
Some NAD is converted into the coenzyme nicotinamide adenine dinucleotide phosphate (NADP); its chemistry largely parallels that of NAD, though predominantly its role is as a cofactor in anabolic metabolism.  
In general, there are three main manufacture methods for NAD preparation utilized by NAD manufacturers in the world such as chemical or enzymatic synthesis, and fermentation biosynthesis. And at present, the NAD manufacturers are located worldwide including China, America, Japan and German.

Get A Quote
Features

Why Choose BONTAC?

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

about BONTAC

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Read More

What kind of coenzyme is nad+, the function and efficacy of NAD+, aging is almost human instinct. Aging brings more than just physical changes, it's a key factor in heart disease, cancer, diabetes, Alzheimer's and many other chronic diseases. Author: bili_56710380827 https://www.bilibili.com/read/cv16932994 Source: bilibili

User Reviews

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs
Frequently Asked Question

Do you have any question?

1.Prevention and treatment of viral-induced inflammatory storms
Scientists have found after extensive research that neo-coronavirus has a mechanism similar to SARS virus to activate inflammatory vesicles NLRP3. and the activation of NLRP3 produces more inflammatory factors, generating excessive inflammation and thus triggering a deadly cytokine storm. This problem can be well addressed by NAD+, which inhibits the activity of NF-κB inflammatory pathway and NLRP3 inflammasome by increasing the activity of sirtuins (SIRT1, SIRT2 and SIRT3), thus preventing cytokine storm caused by excessive inflammation. Therefore, Sinclair and other scientists believe that increasing the concentration of NAD+ may play an important role in the prevention and treatment of neocoronavirus and other viral infections.
2.Restoration of virus-induced metabolic disorders
NAD+ is an essential coenzyme for many cellular energy metabolic pathways, present in every cell of the body, involved in thousands of reactions, and an important player in maintaining cellular viability. In the COVID-19 infection model, NAD+ and NMN supplementation was found to be effective in alleviating cell death and protecting the lung.

First, inspect the factory. After some screening, NAD manufactures that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NAD powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NAD powder. If high purity NAD cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NAD powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.

In the international market, NAD+ food supplements are in production in the United States, the Australian Food and Drug Administration has approved NAD+ products for sale, and Japanese NAD+ manufactures are devoted to extend the market share in China. Li Ka-shing invested HK$200 million in the US NAD manufacturer, whose NAD+ products are being sold by Watsons in Hong Kong! Then Mclane, a company owned by Warren Buffett also joined the NAD market.

Our updates and blog posts

An Integrated Map of Molecular Mechanisms Underlying the Effect of NMN in T2DM

Introduction Diabetes is one of the dominant causes of death and disability worldwide, greatly affecting the life quality of patients. According to the latest data on diabetes released by the Lancet (GBD Study 2021), type 2 diabetes mellitus (T2DM) cases almost makes up 96.0% of all diabetes cases, with the hallmark of impaired glucose uptake. There are approximately 529 million patients with diabetes in 2021, with age-standardized prevalence of 6.1%. Remarkably, β-nicotinamide mononucleotide (NMN) is able to ameliorate T2DM via unexpected effects on adipose tissue rather than mitochondrial biogenesis. Global age-standardised prevalence of type 1 and type 2 diabetes from 1990 through 2050 forecasts Risk factors for T2DM High body mass index (BMI) is the main risk factor for T2DM, followed by dietary risk factors, environmental or occupational factors, smoking, insufficient physical activity, alcohol consumption, etc. The organ-specific effects of NMN treatment in T2DM NMN alleviates the mildly impaired and energy-inefficient protein synthesis in mice with T2DM induced by high-fat food. Specifically, NMN downregulates spliceosome proteins while upregulating ribosome proteins in hepatocytes. Besides, NMN downregulates proteasome and upregulates DNA replication and cell cycle pathways in muscle cells. Integrated proteomics data analysis of NMN-treated HFD mouse liver. Integrated proteomics data analysis of mouse muscle tissue. Adipose tissue, an energy reservoir, has been attested to be implicated with glucose metabolism. NMN boosts glucose uptake via Resistin downregulation, increased protein synthesis/degradation, fatty acid degradation, lysosome protein upregulation (most notably upregulation of the ATP6V1 proton pump), mTOR cell proliferation signaling in white adipose tissue, differentiation of preadipocytes to brown adipose cells and/or overexpression of thermogenic UCP1, a protein of the inner mitochondrial membrane of brown adipose tissue. Integrated proteomics data analysis of NMN-treated HFD mouse adipose tissue Conclusion NMN exerts organ-specific effects, with a vital role in improving glucose uptake, showing potent potential in the management of metabolic disorders including T2DM. Reference [1] GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203-234. doi:10.1016/S0140-6736(23)01301-6 [2] Popescu RG, Dinischiotu A, Soare T, Vlase E, Marinescu GC. Nicotinamide Mononucleotide (NMN) Works in Type 2 Diabetes through Unexpected Effects in Adipose Tissue, Not by Mitochondrial Biogenesis. Int J Mol Sci. 2024;25(5):2594. Published 2024 Feb 23. doi:10.3390/ijms25052594 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

SLC25A51 Functions as an NAD+/NADH Redox Decoupler in AML

Introduction Solute carrier family 25 member 51 (SLC25A51) is perceived as a mammalian transporter, which is capable of importing oxidized nicotinamide adenine dinucleotide (NAD+) into mitochondrial matrix. Remarkably, upregulation of SLC25A51 has correlation with poorer outcomes in patients with acute myeloid leukemia (AML), a clinically aggressive haematological disease with a mortality rate of over 70% within the first 5 years following an initial diagnosis. The association between NAD+/NADH ratio and SLC25A51 in AML cells Both NAD+ (oxidative form) and NADH (reduced form) are essential coenzymes for cellular energy metabolism, and the ratio of NAD+/NADH reflects the metabolic activity and health state, which has a direct impact on cellular rhythms, senescence, carcinogenesis and death. Importing mitochondrial NAD+ by SLC25A51 could be a critical aspect supporting mitochondrial metabolism in AML tumorigenesis. Concretely, the decreased mitochondrial NAD+/NADH ratio and specific loss of reduced ubiquinol are observed post the depletion of SLC25A51 in AML cells U937. SLC25A51 as an NAD+/NADH redox decoupler in AML SLC25A51 functions as an NAD+/NADH redox decoupler in AML tumorigenesis to sustain an oxidative TCA cycle and promote glutaminolysis. Depletion of SLC25A51 results in increased usage of non-glutamine carbon sources to support the TCA cycle, as determined by increased proportions of unlabeled TCA intermediates. SLC25A51 is required for robust glutaminolysis. In the context of SLC25A51 depletion, AML cells are forced to rely more on glutamine for aspartate synthesis. Alleviation of AML by SLC25A51 depletion and 5-azacytidine Loss of SLC25A51 leads to a subcellular redistribution of NAD+ in AML cells to limit proliferation. The combination of SLC25A51 depletion and 5-azacytidine is much effective in repressing the viability of AML cells and prolonging the survival time of mice. Conclusion SLC25A51 can maintain mitochondrial oxidative phosphorylation and boost the proliferation of AML cells by regulating NAD+/NADH ratio in mitochondria, with promising efficacy in treating AML, especially in combination with 5-azacytidine. BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

Investigating the Great Possibility of Rare Ginsenosides as Drugs and Nutraceuticals

1. Introduction Rare ginsenosides, a group of dammarane triterpenoids that exist in low natural abundance, fuels a high concern from scholars recently, showing great potential as shining components in drugs and nutraceuticals. 2. The difference between primary ginsenosides and rare ginsenosides Ginsenosides are chiefly extracted from the plants of Araliaceae such as Panax ginseng, Panax notoginseng, and Panax quinquefolius. In light of their natural abundance, ginsenosides are usually divided into macro (primary) saponins (ginsenosides Rb1, Rg1, Re, Rd, etc.) and rare (secondary) ginsenosides (Rg5, Rk1, Rg3, etc). Relative to primary ginsenosides, rare ginsenosides are easy to be absorbed by human body, with much higher biological activity, membrane permeability and bioavailability. 3. The stereochemistry properties of rare ginsenosides The stereochemistry-driven difference in bioactivities is mostly focused on the 20(S/R)-Rg3 and 20(S/R)-Rh2 epimers. The stereochemistry properties confer rare ginsenosides with diverse bioactivities. Typically, the crucial factors that contribute to the efficacy of rare ginsenosises encompass the number of sugar molecules, sugar linkage and double bonds within C-17 side chain. For instance, the anti-tumor effect increased as the number of sugar moieties in a ginsenoside decreased. 4. Pharmacological activities of rare ginsenosides Rare ginsenosides serve as natural ligands for some specific receptors such as bile acid (FXR/TGR5), steroid hormone, estrogen, glucocorticoid, androgen, platelet adenosine diphosphate, which are determined to exert immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes. 5. The impact of rare ginsenosides upon gut microbiota In addition to above-mentioned pharmacological activities, rare ginsenosides are also contributive to maintaining the homeostasis of gut microbiota. Under normal physiological condition, there is a dynamic balance in gut microbiota, which would be disrupted in the onset and development of certain disease. Rare ginenosides can restore the decreased abundance of certain affected microbiota, regulating the intestinal microecology to influence the physiological function of the host. 6. Conclusion By leverage of the stereochemistry properties, rare ginsenosides exhibit superior bioactivity, opening up new opportunities for the discovery and development of drugs and nutraceuticals. Reference Szot JO, Cuny H, Martin EM, et al. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder. J Clin Invest. 2024;134(4):e174824. Published 2024 Feb 15. doi:10.1172/JCI174824 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.  Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

Contat Us

Do you have any question? Don't hesitate to contact with us

Sending your message. Please wait...