What is NADH stands | BONTAC

What is NADH stands | BONTAC

NADH powder | NADH stands for " Beta-nicotinamide adenine dinucleotide (NAD) + hydrogen (H)” with the CAS NO. of 606-68-8v and chemical formula the chemical formula of   C21H27N7O14P2. It occurs naturally in the body and plays a role in generating energy. NADH is generally a chemical made in your body from niacin, a type of B vitamin. NADH Powder is a white or off-white solid and can be manufactured by a special technique on the level of industrial production.

Get A Quote
Features

Why Choose BONTAC?

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

about BONTAC

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Read More

NADH (Nicotinamide Adenine Dinucleotide Hydrogen) is a reduced form of NAD+ and plays a crucial role in cellular metabolism by serving as an electron carrier in the production of ATP, the primary energy currency of the cell. NADH is involved in the process of cellular respiration, specifically the electron transport chain, where it donates electrons to the respiratory chain and thus helps to generate ATP. NADH is often used as a dietary supplement, particularly in the treatment of fatigue and as a potential treatment for certain neurological disorders.

 
User Reviews

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs
Frequently Asked Question

Do you have any question?

NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.

The action of supplemental NADH is unclear. Oral NADH supplementation has been used to combat simple fatigue as well as such mysterious and energy-sapping disorders as chronic fatigue syndrome and fibromyalgia. Researchers are also studying the value of NADH supplements for improving mental function in people with Alzheimer's disease, and minimizing physical disability and relieving depression in people with Parkinson's disease. Some healthy individuals also take NADH supplements orally to improve concentration and memory capacity, as well as to increase athletic endurance. However, to date there have been no published studies to indicate that using NADH is in any way effective or safe for these purposes

First, inspect the factory. After some screening, NADH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NADH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NADH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.

Our updates and blog posts

The latest research proves: Coenzyme NAD+ can enhance tumor immunity! Expert Comment from Chinese Academy of Sciences

On August 10, 2021, researchers from Shanghai University of Science and Technology published an article titled NAD+ supplement potentiates tumor killing function by rescuing defective TUBBY-mediated NAMPT transcription in tumor infiltrated T cells in Cell Reports, revealing that NAD+ in supplemented during CAR-T therapy and immune checkpoint inhibitor therapy, it can improve the anti-tumor activity of T. At present, the supplementary precursor of NAD+, as a nutritional product,has been verified for human consumption safety.This achievement provides a simply and feasible new method for improving the anti-tumor activity of T cells. Cancer immunotherapies including the adoptive transfer of naturally occurring tumor-infiltrating lymphocytes (TILs) and genetically engineered T cells, as well as the use of immune checkpoint blockade (ICB) to boost the function of T cells, have emerged as promising approaches to achieve durable clinical responses of otherwise treatment-refractory cancers (Lee et al., 2015; Rosenberg and Restifo, 2015; Sharma and Allison, 2015). Although immunotherapies have been successfully used in the clinic, the number of patients benefiting from them is still limited (Fradet et al., 2019; Newick et al., 2017). Tumor microenvironment (TME)-related immunosuppression has emerged as the major reason for low and/or no response to both immunotherapies (Ninomiya et al., 2015; Schoenfeld and Hellmann, 2020). Therefore, efforts to investigate and overcome TME-related limitations in immune therapies are of great urgency. The fact that immune cells and cancer cells share many fundamental metabolic pathways implies an irreconcilable competition for nutrients in TME (Andrejeva and Rathmell, 2017; Chang et al., 2015). During uncontrolled proliferation, cancer cells hijack alternative pathways for more rapid metabolite generation (Vander Heiden et al., 2009). As a consequence, nutrient depletion, hypoxia, acidity, and generation of metabolites that can be toxic in the TME may hinder successful immunotherapy (Weinberg et al., 2010). Indeed, TILs often experience mitochondrial stress within growing tumors and become exhausted (Scharping et al., 2016). Interestingly, multiple studies also indicate that metabolic changes in TME could re-shape T cell differentiation and functional activity (Bailis et al., 2019; Chang et al., 2013; Peng et al., 2016). All these evidences inspired us to hypothesize that metabolic reprogramming in T cells might rescue them from a stressed metabolic environment, thereby reinvigorating their anti-tumor activity (Buck et al., 2016; Zhang et al., 2017). In this current study, by integrating both genetic and chemical screens, we identified that NAMPT, a key gene involved in NAD+ biosynthesis, was essential for T cell activation. NAMPT inhibition led to robust NAD+ decline in T cells, thereby disrupting glycolysis regulation and mitochondrial function, blocking ATP synthesis, and dampening the T cell receptor (TCR) downstream signaling cascade. Building on the observation that TILs have relatively lower NAD+ and NAMPT expression levels than T cells from peripheral blood mononuclear cells (PBMCs) in ovarian cancer patients, we performed genetic screening in T cells and identified that Tubby (TUB) is a transcription factor for NAMPT. Finally, we applied this basic knowledge in the (pre) clinic and showed very strong evidence that supplementation with NAD+ dramatically improves the anti-tumor killing activity both in adoptively transferred CAR-T cells therapy and immune check point blockade therapy, indicating their promising potential for targeting NAD+ metabolism to better treat cancers. 1.NAD+ regulates the activation of T cells by affecting energy metabolism After antigen stimulation, T cells undergo metabolic reprogramming, from mitochondrial oxidation to glycolysis as the main source of ATP. While maintaining sufficient mitochondrial functions to support cell proliferation and effector functions.Given that NAD+ is the main coenzyme for redox, the researchers verified the effect of NAD+ on the level of metabolism in T cells through experiments such as metabolic mass spectrometry and isotope labeling. The results of in vitro experiments show that NAD+ deficiency will significantly reduce the level of glycolysis, TCA cycle and electron transport chain metabolism in T cells. Through the experiment of replenishing ATP, the researchers found that the lack of NAD+ mainly inhibits the production of ATP in T cells, thereby reducing the level of T cell activation. 2.The NAD+ salvage synthesis pathway regulated by NAMPT is essential for T cell activation The metabolic reprogramming process regulates the activation and differentiation of immune cells. Targeting T cell metabolism provides an opportunity to modulate the immune response in a cellular way. Immune cells in the tumor microenvironment, their own metabolic level will also be correspondingly affected. The researchers in this article have discovered the important role of NAMPT in the activation of T cells through genome-wide sgRNA screening and metabolism-related small molecule inhibitor screening experiments. Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions and can be synthesized through the salvage pathway, de novo synthesis pathway, and Preiss-Handler pathway. The NAMPT metabolic enzyme is mainly involved in the NAD+ salvage synthesis pathway. Analysis of clinical tumor samples found that in tumor-infiltrating T cells, their NAD+ levels and NAMPT levels were lower than other T cells. Researchers speculate that NAD+ levels may be one of the factors that affect the anti-tumor activity of tumor-infiltrating T cells. 3.Supplement NAD+ to enhance the anti-tumor activity of T cells Immunotherapy has been exploratory research in cancer treatment, but the main problem is the best treatment strategy and the effectiveness of immunotherapy in the overall population. Researchers want to study whether enhancing the activation ability of T cells by supplementing NAD+ levels can enhance the effect of T cell-based immunotherapy. At the same time, in the anti-CD19 CAR-T therapy model and anti-PD-1 immune checkpoint inhibitor therapy model, it was verified that supplementation of NAD+ significantly enhanced the tumor-killing effect of T cells. The researchers found that in the anti-CD19 CAR-T treatment model, almost all mice in the CAR-T treatment group supplemented with NAD+ achieved tumor clearance, while the CAR-T treatment group without NAD+ supplemented only about 20 % Of mice achieved tumor clearance. Consistent with this, in the anti-PD-1 immune checkpoint inhibitor treatment model, B16F10 tumors are relatively tolerant to anti-PD-1 treatment, and the inhibitory effect is not significant. However, the growth of B16F10 tumors in the anti-PD-1 and NAD+ treatment group could be significantly inhibited. Based on this, NAD+ supplementation can enhance the anti-tumor effect of T cell-based immunotherapy. 4.How to supplement NAD+ The NAD+ molecule is large and cannot be directly absorbed and utilized by the human body. The NAD+ directly ingested orally is mainly hydrolyzed by brush border cells in the small intestine. In terms of thinking, there is indeed another way to supplement NAD+, which is to find a way to supplement a certain substance so that it can synthesize NAD+ autonomously in the human body. There are three ways to synthesize NAD+ in the human body: Preiss-Handler pathway, de novo synthesis pathway and salvage synthesis pathway. Although the three ways can synthesize NAD+, there is also a primary and secondary distinction. Among them, the NAD+ produced by the first two synthetic pathways only accounts for about 15% of the total human NAD+, and the remaining 85% is achieved through the way of remedial synthesis. In other words, the salvage synthesis pathway is the key to the human body to supplement NAD+. Among the precursors of NAD+, nicotinamide (NAM), NMN and nicotinamide ribose (NR) all synthesize NAD+ through a salvage synthesis pathway, so these three substances have become the body's choice for supplementing NAD+. Although NR itself has no side effects, in the process of NAD+ synthesis, most of it is not directly converted into NMN, but needs to be digested into NAM first, and then participate in the synthesis of NMN, which still cannot escape the limitation of rate-limiting enzymes. Therefore, the ability to supplement NAD+ through oral administration of NR is also limited . As a precursor for supplementing NAD+, NMN not only bypasses the restriction of rate-limiting enzymes, but is also absorbed very quickly in the body and can be directly converted into NAD+. Therefore, it can be used as a direct, rapid and effective method to supplement NAD+. Expert Reviews: Xu Chenqi (Excellence and Innovation Center of Molecular Cell Science, Chinese Academy of Sciences, Immunology Research Expert) Cancer treatment is a problem in the world. The development of immunotherapy has made up for the limitations of traditional cancer treatment and expanded the treatment methods of doctors. Cancer immunotherapy can be divided into immune checkpoint blocking therapy, engineered T cell therapy, tumor vaccine, etc. These treatment methods have played a certain role in the clinical treatment of cancer. At the same time, this also makes the current focus of immunotherapy research on how to further enhance the effect of immunotherapy and expand the beneficiaries of immunotherapy.

Delving into the Function of Ginsenoside Rh2 in the Develpoment of Breast Cancer

1. Introduction According to the 2020 report of World Health Organization (WHO), there are approximately 2.3 million cases with breast cancer worldwide. Breast cancer has emerged as one of the most malignant tumor in females with significant incidence rate. Although great progress has made in improving the cure rate of early-stage breast cancer in recent years, advanced breast cancer is still hard to be cured. How to reduce the risk of recurrence and metastasis of early-stage breast cancer as well as prolong the survival of patients with advanced breast cancer is still a challenge in the clinical treatment of breast cancer. Notably, ginsenoside Rh2 (GRh2) exerts prominent impacts on retarding the progression of breast cancer via strengthening the immune surveillance of natural killer (NK) cells, a kind of cytotoxic innate lymphocytes critical for tumor immune response. 2. The repressive role of GRh2 in the progression of breast cancer GRh2 hinders the growth, proliferation and metastasis of breast cancer. Simply put, the body weight and tumor volume of model mice are markedly reduced post treatment of GRh2 (10 mg/kg and 20 mg/kg). In addition, the proliferating rate of breast cancer cells is repressed by GRh2 in a dose-dependent manner (5, 10 and 20 mg/kg). Upon the treatment of GRh2 (20 mg/kg), the loss of lung capacity is obviously reduced and the lung metastases formed by MDA-MB-231 tumor cells are strikingly mitigated as well, with no apparent liver metastatic nodules. 3. The enhanced killing effect of NK cells on breast cancer cells following GRh2 treatment GRh2 exerts remarkable effects on retarding the progression of breast cancer via improving the killing ability of NK92MI cells. In a nutshell, the mRNA expression levels of killing mediators perforin and IFN-γ in NK92MI cell-breast cancer cell co-culture system are explicitly upregulated post GRh2 treatment. Strikingly, the reduced lung metastasis of breast cancer by GRh2 is almost counteracted upon the depletion of NK cells. Relative to that of the vehicle control, the amount of CD107a, a degranulation marker of NK cells, is overtly elevated in the presence of GRh2 (20 mg/kg), verifying the enhanced killing activity of NK cells on breast cancer.  4. The underlying molecular mechanism of GRh2 on potentiating the NK cell activity against breast cancer Breast cancer cells reduce the recognition by NKG2D through proteolytic shedding MICA mediated by ERp5 to escape NK cell surveillance. GRh2 interferes with the formation of soluble MICA (sMICA) by suppressing the expression of ERp5 to increase the contents of killing mediators from NK cells, thereby exerting striking effects on fighting against breast cancer. 5. Conclusion GRh2 potentiates the cytotoxic effect of NK cells and enhances the immune surveillance function of NK cells to fight against breast cancer, which may be a potent drug candidate for the prevention and treatment of breast cancer. Reference [1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660 [2] Yang C, Qian C, Zheng W, et al. Ginsenoside Rh2 enhances immune surveillance of natural killer (NK) cells via inhibition of ERp5 in breast cancer. Phytomedicine. 2024;123:155180. doi:10.1016/j.phymed.2023.155180 Product advantages of BONTAC ginsenoside Rh2 BONTAC is the first enterprise worldwide that can provide national mass production of ginsenosides (Rh2) by enzymatic synthesis, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.

Congratulation! BONTAC gains four more honors in health industry

Introduction On March 28, 2024, Digital Health and Precise Nutrition Forum & Annual Conference of Health Industry in 2023 is held in Shenzhen, China. By virtue of the technical innovation in synthetic biology, far-reaching industry impact and positive commitment to social responsibility, BONTAC has been awarded 4 more honors in the heath industry, namely the "The Benchmarking Enterprise of Shenzhen Health Industry in 2023", "The Most Valuable Investment Enterprise of Shenzhen Health Industry in 2023", "Special Contribution Award for Shenzhen Health Industry in 2023" and "The Excellent Case in Shenzhen Health Industry Development Report (2022)".  About Digital Health and Precise Nutrition Forum & Annual Conference of Health Industry in 2023 This conference is organized by Shenzhen Health Industry Alliance, Shenzhen Association for the Development & Promotion of Health Industry and Shenzhen Health Care Association, aiming to award and recognize the paragons in the health industry who make great contributions with their practical actions. They represent the top level and mainstream of Shenzhen in health industry. Evaluation criteria for two of the awards As for “The Most Valuable Investment Enterprise of Shenzhen Health Industry in 2023", one should be equipped with: * Market share, brand impact and technical innovation ability * Explicit goal, customer demand and operation means * Leading technology, products or services * Management team with abundant experience and professional ability For the Benchmarking Enterprise of Shenzhen Health Industry in 2023, the selected enterprises should have: * Certain industry impacts * Achievement in scientific innovation, intellectual property, etc. * Active participation in the drafting of international/national/industry standard * An efficient and professional team * Positive commitment to the social responsibility Professor Zhang’s speech in round-table dialogue Professor Zhang, the chief scientist and founder in BONTAC, has been invited to participate in the round-table dialogue themed by “Digitization Empowers Nutrition and Health”. She shares profound and unique insights upon the research and practice of coenzyme raw materials in the field of precise nutrition. “BONTAC realizes the efficient synthesis and precise application of coenzyme raw materials in the fields such as food, agriculture and animal nutrition through deep integration of big data with AI technology”, Professor Zhang said. “We not only focus on the extensive use of coenzyme raw materials, but also emphasize their safety and function, with the purpose of satisfying everyone's demand on precise nutrition as well as promoting the continuous innovation and development of the health industry. Novel trend towards health industry Under the guidance of “Health China” strategy, there is an increasing trend towards to the deep integration of digital industry with health industry in current society. The reform of digital technology opens up unprecedented opportunities for the health industry, driving the intelligence, precision and personalization of health. In Shenzhen, a new blueprint for the high-quality development of “20+8” industry clusters (top 20 strategic emerging industrial clusters and 8 industries of the future) has been plotted in 2023. With the continuous optimization of industry structure, the health industry in Shenzhen has been developed rapidly, which infuses new energy for the economy and provides solid support for the citizen’s health and well-being. BONTAC as a driver of health and well-being BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, who adheres to adopt the innovation-driven scientific strategy, with more than 170 invention patents, making great contributions to the health industry. Strikingly, a independent platform for directed evolution has been established in BONTAC, where premium enzyme species can be screened by AI to provide strong support for the production of high-quality coenzyme raw materials, driving the integration of digital industry with health industry. In 2024, BONTAC will continue to stick to our mission of “Green Bio-Tech, Healthier and Better Life!” and actively respond to the appeal in “Outline of the Program for Health China 2030”, promoting the deep integration of synthetic biology with health industry and constructing a better health service system.

Contat Us

Do you have any question? Don't hesitate to contact with us

Sending your message. Please wait...