NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
When applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective , as at 500 µM concentration, it achieved “an almost 10-fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme becomes the mainstream method owing to the advantages of pollution free, high level of purity and
1. "Bonzyme" Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3. Exclusive “Bonpure” seven-step purification technology, high purity (up to 99%) and stability of production of NMNH powder
4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5. Provide one-stop product solution customization service
NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.
Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction Rare ginsenoside Rg3, an active extract from Panax ginseng, is reported to possess a wide range of pharmacological properties including anti-angiogenesis and anti-cancer, with high lipophilicity (estimated log P4) and a low water solubility at pH7.4. Nevertheless, its permeability and bioavailability are relatively low, and production procedures are complex. Remarkably, the metabolites of Rg3 have similar and even stronger activity than Rg3, opening up new opportunities for future adjuvant cancer therapy. The association of ginsenoside Rg3 and its metabolites There are two epimers of ginsenoside Rg3, which can be subsequently deglycosylated into epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The anti-cancer properties of Rg3 metabolites Angiogenesis and tumor cell proliferation are both interdependent factors in tumor progression. In terms of anti-proliferation, Rg3 metabolites, who induce S-phase arrest and necroptosis in a human triple negative breast cancer cell line MDA-MB-231 as well as G0/G1 arrest and apoptosis in human umbilical vein endothelial cells (HUVECs), are more potent than Rg3. The clinically relevant target of Rg3 metabolites are the endothelial cells. Anti-angiogenic effects are evaluated using loop formation assay. Among Rg3 metabolites, S-Rh2 is the most potent inhibitor of loop formation. VEGFR2 and AQP1 as the targets of Rh2 According to the prediction by in silico molecular docking, there is a good binding score between Rh2/PPD and the ATP-binding pocket of VEGFR2, a dominant regulator controlling both physiological and pathological angiogenesis. Through VEGF bioassay, it is discovered that S-Rh2 is a most potent anti-angiogenic candidate with allosteric modulatory action on VEGFR2 function. In addition, Rh2 and PPD have the potential of blocking AQP1 and AQP5, two members of the aquaporin family with vital roles in proliferation, migration, invasion and angiogenesis. Moreover, Rg3 is more selective for AQP1 and does not show a good binding score with AQP5. In light of this, blocking the water channel function of AQP1 may have an immediate role in inhibition of loop formation and anti-angiogenic effects of Rh2. Conclusion Metabolites of Rg3 could potentially increase the anti-cancer properties of Rg3. The application of these molecules alone or together may be potent alternatives for future adjuvant cancer therapy. Reference Nakhjavani M, Smith E, Yeo K, et al. Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3. J Ginseng Res. 2024;48(2):171-180. doi:10.1016/j.jgr.2021.05.008 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction The gut microbiota has long been regarded as one of the key elements contributing to the regulation of host health. Any changes in the composition or quality of the gut microbiota may have physiological consequences for the host. To determine the effect of sweetener stevia (also known as stevioside) on the gut microbiome of healthy population, the stool samples are collected from healthy participants who consume with or without five drops of the sweetener stevia twice daily. Following analyses of 16S rRNA sequencing method, no large-scale change is found in the gut microbiota post 12 weeks of consumption with stevia, hinting the safety of stevia. 2. Insignificant changes in the alpha or beta diversity following consumption of stevia It is discovered that there is no significant difference in alpha diversity (in terms of observed taxa, evenness and Shannon Index) and beta diversity (with regard to PCoA, PERMANOVA, and Jaccard Index) between groups. Nevertheless, PCoA plots shows strong separation along the x-axis. In addition, the community composition in each group is relatively even over time and equally diverse. 3. No clear difference in relative abundances of taxa At the genus level, relative abundances are similar between the control and stevia groups. No major difference is observed in relative abundances at the class, order and family level. Strikingly, butyricoccus is the only one identified taxon exhibiting significant difference at baseline, but not after 12 weeks of stevia consumption. Moreover, Collinsella and Aldercreutzia are two coprococcus species identified as explicitly different at baseline (one higher and one lower when comparing stevia vs. control), which however are significantly elevated after 12 weeks of consumption with stevia. 4. The safe intake volume of sweetener steviol glycosides In the European Food Safety Authority (EFSA), there is a Panel on Food Additives and Flavourings (FAF), which is responsible for evaluating the safety of food additives and establishing acceptable daily intake levels for safe use. Steviol glycosides, one of the extract from stevia, is evaluated by the FAF as well. In accordance to the latest toxicological test, this sweeter is not genotoxic and carcinogenic, without any adverse effects on the human reproductive system or growing children. The expert group has set the acceptable daily intake (ADI) of steviol glycosides at 4 milligrams per kilogram of body weight per day, which is consistent with the level determined by the Joint Expert Committee on Food Additives (JECFA) administered by the US Food and Agriculture Organization (FAO) and the World Health Organization (WHO). 5. Conclusion Regular, long-term consumption of stevia does not overtly alter the composition of the human gut microbiotia. Stevia can be safe as long as the intake volume is controlled appropriately. Reference Singh G, McBain AJ, McLaughlin JT, Stamataki NS. Consumption of the Non-Nutritive Sweetener Stevia for 12 Weeks Does Not Alter the Composition of the Human Gut Microbiota. Nutrients. 2024;16(2):296. Published 2024 Jan 18. doi:10.3390/nu16020296 BONTAC Stevia/Stevioside (RD) BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. Patent-grade Stevia Reb-D (US11312948B2 & ZL2018800019752) is availbale at BONTAC. High quality and stable supply of stevioside Reb-D can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction On July 2023, the World Health Organization (WHO) has classified the soda sweetener aspartame as a possible carcinogen, but said that aspartame is safe to consume within a daily limit of 40 milligrams per kilogram of a person’s body weight according to the latest assessment results regarding the impacts of the non-sugar sweetener aspartame upon the health. How about another sweetener stevioside? Is stevioside a sugar reducer or a health killer? 2. Current situation on stevioside Stevioside (also termed stevia glycoside) has been regarded as “the third largest source of natural sugar across the world” by virtue of its low calorie, high sweetness, good stability and low price, which is widely used in medicine, daily chemicals, beverage, food, brewing and other industries. 3. Regulatory application and control of stevioside The aforementioned report of WHO on the possible carcinogenesis of soda sweetener aspartame is based on high intake. An adult weighing 70 kilograms or 154 pounds would have to drink more than 9 to 14 cans of aspartame-containing soda daily to exceed the limit and potentially face health risks. There is no need to be worry about the risk of carcinogenesis in the case of healthy intake. The same situation is applicable to another sweetener stevioside. Stevioside is approved to be sweetener in food in countries like Mainland China, Japan, Korea, Australia, New Zealand, the USA and European Union. In China, there are detail specifications on the food additive stevioside (GB 2760-2014). 4. The therapeutic properties of stevioside 4.1 Antitumor effect Stevioside can be applied as a valuable chemotherapy candidate to be further investigated for cancer therapy. The activity of the well-known tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), is successfully inhibited with stevioside in a murine skin-cancer model. In addition, stevioside can reduce mammary adenoma incidence in F344 rats. 4.2 Anti-hypertensive activity The hypotensive effect observed in rats after chronic oral administration (30 days) of 2.67 g stevia leaves/day has been confirmed in spontaneously hypertensive rats. In that murine model, stevioside (100 mg/kg; i.v.) is able to reduce blood pressure with no change in serum epinephrine, norepinephrine, or dopamine levels. 4.3 Anti-diabetics In diabetic rats, stevioside (0.2 g/kg; i.v. administration) decreases glucose blood levels, yet increases insulin responses and reactions to an intravenous glucose tolerance test (IVGT). Also, stevioside enhances insulin levels above basal during the IVGT, without altering blood glucose response, in normal rats, hinting its potential as a drug candidate for type 2 diabetes. 4.4 Inhibition of pathogenic bacteria Stevioside has demonstrated antibacterial action on various foodborne pathogenic bacteria, including Escherichia coli, a wellknown etiologic agent of severe diarrhea. Regarding antiviral properties, stevioside seems to impede binding of rotavirus to host cells. Rotavirus is commonly associated with pediatric gastroenteritis. 4.5 Anti-inflammatory property In lipopolysaccharide (LPS)-stimulated THP1 cells, stevioside (1mM) inhibits NF-κB. Moreover, stevioside prevents in vitro upregulation of genes involved in liver inflammation. In addition, silico assays demonstrate its antagonistic action in two proinflammatory receptors: tumor necrosis factor receptor (TNFR)-1 and Toll-like receptor (TLR)-4-MD2. 4.6 Antioxidant capability The antioxidant effects of stevioside and rebaudioside A have been confirmed in a fish model, both of which effectively control lipoperoxidation and protein carbonylation. Furthermore, stevioside prevents oxidative DNA damage in the livers and kidneys of a type 2 diabetes murine model. 5 Conclusion As long as the intake is properly controlled, stevioside can be very useful. Stevioside holds a great promise in the clinical treatment and daily health care. Reference Orellana-Paucar A. M. (2023). Steviosides from Stevia rebaudiana: An Updated Overview of Their Sweetening Activity, Pharmacological Properties, and Safety Aspects. Molecules (Basel, Switzerland), 28(3), 1258. https://doi.org/10.3390/molecules28031258 BONTAC Stevioside Reb-D product features and advantages BONTAC possesses the international application and authorized patents on Stevioside Reb-D (US11312948B2 & ZL2018800019752), where the product quality (purity and stability) can be better ensured. Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.