NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NMN was only considered as a source of cellular energy and an intermediate in NAD+ biosynthesis, currently, the attention of the scientific community has been paid on anti-aging activity and a variety of health benefits and pharmacological activities of NMN which are related to the restoring of NAD+. Thus, NMN has therapeutic effects towards a range of diseases, including age-induced type 2 diabetes, obesity, cerebral and cardiac ischemia, heart failure and cardiomyopathies, Alzheimer’s disease and other neurodegenerative disorders, corneal injury, macular degeneration and retinal degeneration, acute kidney injury and alcoholic liver disease.
NMN powder in general is typically produced via chemical or enzymatic synthesis, or fermentation biosynthesis. There are pros and cons to all three methods.
Chemical synthesis is expensive and labor intensive, and all raw ingredients used are categorized as “unnatural,” i.e., not from biological systems. There are, however, some advantages from the manufacturer’s perspective. The yield is well suited to mass NMN powder production, and all of those unnatural raw ingredients can be carefully controlled. But there are a number of drawbacks as well. Some of the solvents used in the manufacturing process are seriously bad from an environmental standpoint, and impurities and by-products can be challenging to remove from the finished product – that’s seriously bad for the consumer.
Enzymatic production of NMN powder, on the other hand, is considered a “green preparation method.” Like the chemical route, it’s pricey, but it offers a higher yield and impressively high purity. The finished NMN ticks all the boxes – stable, easily absorbed, lightweight, low density, and a low molecular structure.
Fermentation has also been explored as a method of producing NMN, but yield, though high quality, is pretty abysmal, so many supplement companies quite sensibly look to other, more efficacious processes.
1、“Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability of production of NMN powder
3、Industrial leading technology: 15 domestic and international NMN patents
4、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMN powder
5、Multiple in vivo studies show that Bontac NMN powder is safe and effective
6、Provide one-stop product solution customization service
7、NMN raw material supplier of famous David Sinclair team of Harvard University.
Aging, as a natural process is identified by downregulation of energy production in mitochondria of various organs such as brain, adipose tissue, skin, liver, skeletal muscle and pancreas due to the depletion of NAD+ . NAD+ levels in the body decrease as a consequence of increasing NAD+ consuming enzymes when aging There are three different biosynthesis pathways to produce NAD+ in mammalian cells including de novo synthesis from tryptophan, salt and Preiss-Handler pathways. Among these three pathways, NMN is an interproduct by is involved in NAD+ biosynthesis through salt and Preiss-Handler pathways. The salvage pathway is the most efficient and the main route for the NAD+ biosynthesis, in which nicotinamide and 5-phosphoribosyl-1-pyrophosphate are converted to NMN with the enzyme of NAMPT followed by conjugation to ATP and conversion to NAD by NMNAT. Furthermore, NAD+ consuming enzymes are responsible for degradation of NAD+ and consequence nt formation of nicotinamide as a by-product.
The safety of NMN powder cannot be assessed since required clinical and toxicological studies have not been completed yet to establish the recommended safe levels for long term administration. Nevertheless, their safety and efficacy are uncertain and unreliable since most of them have not been back by Rigorous scientific preclinical and clinical testing. This issue has been arisen as manufacturers are hesitant to pay for research and clinical trials due to potential lower profit margin, and there is no authorizing agency to regulate NMN products because it is often product sold as functional food than heavily regulated therapeutic drug. Therefore, more strict approval process has been demanded by consumer advocacy groups requesting regulatory agencies to set standard and restrictions for marketing anti-aging health products, considering safety, health and wellbeing of N red besumers. a panacea for the elderly, because boosting NAD levels when not required may yield some detrimental effects. Therefore, the dose and frequency of NMN supplementation should be carefully prescribed depending on the type of age-related deficiency and all other confronting health conditions of the people. Other NAD precursors over have been studied to diverse age-related deficiencies and they are used for particular deficiencies, only after they are proven for effectiveness and safe to use. Therefore, the same principle should be applied to NMN as well
First, inspect the factory. After some screening, NMN companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMN powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMN powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound ca n be preliminarily determined.
1. Introduction According to the 2020 report of World Health Organization (WHO), there are approximately 2.3 million cases with breast cancer worldwide. Breast cancer has emerged as one of the most malignant tumor in females with significant incidence rate. Although great progress has made in improving the cure rate of early-stage breast cancer in recent years, advanced breast cancer is still hard to be cured. How to reduce the risk of recurrence and metastasis of early-stage breast cancer as well as prolong the survival of patients with advanced breast cancer is still a challenge in the clinical treatment of breast cancer. Notably, ginsenoside Rh2 (GRh2) exerts prominent impacts on retarding the progression of breast cancer via strengthening the immune surveillance of natural killer (NK) cells, a kind of cytotoxic innate lymphocytes critical for tumor immune response. 2. The repressive role of GRh2 in the progression of breast cancer GRh2 hinders the growth, proliferation and metastasis of breast cancer. Simply put, the body weight and tumor volume of model mice are markedly reduced post treatment of GRh2 (10 mg/kg and 20 mg/kg). In addition, the proliferating rate of breast cancer cells is repressed by GRh2 in a dose-dependent manner (5, 10 and 20 mg/kg). Upon the treatment of GRh2 (20 mg/kg), the loss of lung capacity is obviously reduced and the lung metastases formed by MDA-MB-231 tumor cells are strikingly mitigated as well, with no apparent liver metastatic nodules. 3. The enhanced killing effect of NK cells on breast cancer cells following GRh2 treatment GRh2 exerts remarkable effects on retarding the progression of breast cancer via improving the killing ability of NK92MI cells. In a nutshell, the mRNA expression levels of killing mediators perforin and IFN-γ in NK92MI cell-breast cancer cell co-culture system are explicitly upregulated post GRh2 treatment. Strikingly, the reduced lung metastasis of breast cancer by GRh2 is almost counteracted upon the depletion of NK cells. Relative to that of the vehicle control, the amount of CD107a, a degranulation marker of NK cells, is overtly elevated in the presence of GRh2 (20 mg/kg), verifying the enhanced killing activity of NK cells on breast cancer. 4. The underlying molecular mechanism of GRh2 on potentiating the NK cell activity against breast cancer Breast cancer cells reduce the recognition by NKG2D through proteolytic shedding MICA mediated by ERp5 to escape NK cell surveillance. GRh2 interferes with the formation of soluble MICA (sMICA) by suppressing the expression of ERp5 to increase the contents of killing mediators from NK cells, thereby exerting striking effects on fighting against breast cancer. 5. Conclusion GRh2 potentiates the cytotoxic effect of NK cells and enhances the immune surveillance function of NK cells to fight against breast cancer, which may be a potent drug candidate for the prevention and treatment of breast cancer. Reference [1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660 [2] Yang C, Qian C, Zheng W, et al. Ginsenoside Rh2 enhances immune surveillance of natural killer (NK) cells via inhibition of ERp5 in breast cancer. Phytomedicine. 2024;123:155180. doi:10.1016/j.phymed.2023.155180 Product advantages of BONTAC ginsenoside Rh2 BONTAC is the first enterprise worldwide that can provide national mass production of ginsenosides (Rh2) by enzymatic synthesis, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.
1. Introduction Acute lung injury comprises a uniform response of the lung to inflammatory or chemical insults which is commonly caused by systemic illness including sepsis or trauma, infection with pathogens, and toxic gas inhalation. Sepsis-induced acute lung injury is a leading cause of morbidity and mortality worldwide, imposing substantial economic, social, and health burdens. Despite advances in knowledge of septic pulmonary pathologies over the years, efficient targeted therapies are still lacking. Notably, NMN administration has been uncovered to be effective in alleviating sepsis-induced acute lung injury, which can reduce cellular inflammation, oxidative stress, and apoptosis. 2. The impact of NMN upon macrophage polarization in LPS-induced MH-S cells In mouse alveolar macrophage cell line MH-S treated by lipopolysaccharide (LPS), NMN can facilitate the transformation of macrophages from pro-inflammatory M1 phenotype towards the anti-inflammatory M2 phenotype to promote inflammatory resolution and tissue repair, as evidenced by the downregulation of M1 phenotype-associated markers (iNOS and CD86+ F4/80+) and pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) as well as the upregulation of M2 phenotype-related markers (Arg1 and CD86+ F4/80+) and anti-inflammatory mediators (IL-10) post NMN administration. 3. The alleviation of LPS-induced lung injury post NMN administration In vitro, NMN represses the apoptosis and production of pro-inflammatory factors in LPS-stimulated MH-S cells. In vivo, NMN explicitly ameliorates LPS-induced pathological alterations, encompassing thickened alveolar wall, inflammatory cell infiltration, septa swelling, and erythrocyte exudation, in a murine septic model. 4. The association of SIRT1/NF-κB signaling activation with NMN-mediated macrophage polarization SIRT1/NF-κB signaling pathway is involved in the lung protection of NMN, as manifested by the elevated expression of SIRT1 as well as the reduced acetylation and phosphorylation of NF-κB-p65 post NMN treatment. Repression of SIRT1/NF-κB signaling offsets NMN-mediated M2 macrophage polarization. SIRT1 inhibitor EX-527 decreases the expression of SIRT1, yet increases the expression of acetylated and phosphorylated NF-κB-p65 in septic mice pretreated with NMN. In contrast to NMN, EX-527 overtly promotes the expression levels of M1 macrophage-associated markers (iNOS and CD86) while inhibiting those of M2 phenotype-related markers (Arg1 and CD206). 5. Conclusion NMN can effectively ameliorate LPS-induced acute lung injury through modulating macrophage polarization via SIRT1/NF-κB signalling pathway, providing a novel therapeutic direction for sepsis-induced acute lung injury. 6. Reference He, Simeng et al. “Nicotinamide mononucleotide alleviates endotoxin-induced acute lung injury by modulating macrophage polarization via the SIRT1/NF-κB pathway.” Pharmaceutical biology vol. 62,1 (2024): 22-32. doi:10.1080/13880209.2023.2292256 BONTAC NMN BONTAC is the leader of the global NMN industry, with the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 160 invention patents including 15 NMN patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. Both the high-quality product and excellent service can be better ensured in BONTA. BONTAC has 12 years of industry experience, which is worthy of your trust. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.
1. Introduction Gastric cancer (GC) represents a global health-care challenge, which is the fifth most common cancer and the fourth leading cause of cancer death across the world in 2020, with a significant incidence rate. Despite the efficacy of improved chemotherapy and surgical options, the prognosis of GC patients remains unsatisfactory. Remarkably, NAD+ is an intriguing target for cancer therapy by leverage of its impacts upon energy metabolism and pathway regulation. This research is engineered to probe into the magic roles of NAD+ metabolism-associated genes (NMRGs) in GC. 2. The establishment of prognostic risk model for GC patients Based on the expression levels of NAD+ metabolism-related genes in GC cell lines, a prognostic model is established for GC patients. Simply put, a total of 13 lncRNAs related to NMRGs are singled out by LASSO regression to construct prognostic risk model, with seven markedly up-regulated lncRNAs and six prominently down-regulated lncRNAs in GC tissues, as confirmed by real-time polymerase chain reaction. On this basis, six lncRNAs with the minimum likelihood of deviance corresponding to the first-rank value of Log (k) are chosen, followed by the plotting of model AUC and calculation of the risk score. The detailed calculation formula is listed below: risk score = AL139147.1 × (0.416) + AC107021.2 × (0.3119) + AC090825.1 × (0.1218) + AC005726.2 × (−0.0.0062) + AC012615.1 × (−0.0130) + AP001107.6 × (−0.0451). It is found that patients with high-risk scores have a poor prognosis. 3. The correlation between immune factors and risk scores The levels of immune cell infiltration, including CD8 T cells, CD4 naïve T cells, CD4 memory-activated T cells, B memory cells, and naïve B cells, are markedly associated with risk scores. Besides, high-risk patients show activated immune checkpoints as well as high immune and stromal scores. 4. The role of NAD+ in the metabolism of GC patients NAD+ not only promotes GC progression, but also promotes immune cell infiltration into tumors. The modulation of NAD+ is significant for the metabolism of GC patients. 5. Conclusion NMRGs may be promising biomarkers for predicting clinical outcomes of GC patients and ultimately facilitating their precise management. Reference Sun, X., Wen, H., Li, F., Bukhari, I., Ren, F., Xue, X., Zheng, P., & Mi, Y. (2023). NAD+ associated genes as potential biomarkers for predicting the prognosis of gastric cancer. Oncology research, 32(2), 283–296. https://doi.org/10.32604/or.2023.044618 BONTAC NAD and NMN BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and NMN. Bonzyme whole-enzymatic method is adopted, which is environmental-friendly, with no harmful solvent residues. The purity of products can reach up to 95%, which is benefited from the exclusive Bonpure seven-step purification technology. BONTAC has self-owned factories and has obtained a number of international certifications, where high quality and stable supply of products can be ensured. BONTAC has over 170 domestic and foreign patents, leading the industry of coenzyme and natural products. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.